IJPR.2024.116

Type of Article:  Review

Volume 12; Issue 3 (June 2024)

Page No.: 4727-4737

DOI: https://dx.doi.org/10.16965/ijpr.2024.116

Current Trends in Effectiveness of Robotic Assisted Gait Training (RAGT) for Gait Recovery in Neuro Rehabilitation – An Evidence-Based Scoping Review

Ninad R Saraf  *1, Hrishikesh Korada 2, Ranjith Anumasa 3, Pragati B Shetkar 4.

*1 Director, Tulip Physiotherapy, Tidke Colony, Nashik, Maharashtra, India.

2   Orthopedic and Podiatric Physiotherapist, Founder – Director Footryx Healthcare Pvt Ltd, Head – Footryx Physiotherapy and Podiatry Rehab @AWHC, Hyderabad, India.

3 Associate Professor, Yashoda College of Physiotherapy, Medchal, Malkajgiri, Telangana, India.

4 Assistant Professor, BR Nath Pai College of Physiotherapy, Kudal, Sindhudurg, Maharashtra, India.

Corresponding Author: Dr. Ninad R Saraf, Director, Tulip Physiotherapy, Tidke Colony, Nashik, Maharashtra, India. E-Mail: saraf.ninad@gmail.com

ABSTRACT

Robotic-assisted gait training plays a pivotal role in the rehabilitation of individuals recovering from post-stroke and post-spinal cord injuries. By employing sophisticated robotics, this therapy facilitates repetitive, task-specific movements essential for relearning walking patterns. The precision and customisation of robotic systems ensure tailored interventions targeting specific impairments. Moreover, these technologies provide real-time feedback, enhancing patient engagement and motivation. In this review, 11 articles were finalized for review, five were for post-stroke rehabilitation and 6 for spinal cord injuries.

Results show that there is improvement in Spatiotemporal parameters of gait, functional outcomes and quality of life.

In Conclusion, robotic-assisted gait training ultimately accelerates recovery, improves functional outcomes, and restores independence, profoundly impacting rehabilitation effectiveness.

KeywordsAssistive technology, Robotics, Gait parameters, Neurorehabilitation, Functional outcome.

 REFERENCES

[1]. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MV, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in neurobiology. 2018 Apr 1;163:144-71.
https://doi.org/10.1016/j.pneurobio.2017.10.001
PMid:28987927 PMCid:PMC5886838
[2]. Meetoo D. Chronic diseases: the silent global epidemic. British journal of nursing. 2008 Nov 27;17(21):1320-5.
https://doi.org/10.12968/bjon.2008.17.21.31731
PMid:19060813
[3]. Mukherjee D, Patil CG. Epidemiology and the global burden of stroke. World neurosurgery. 2011 Dec 1;76(6):S85-90.
https://doi.org/10.1016/j.wneu.2011.07.023
PMid:22182277
[4]. Béjot Y, Bailly H, Durier J, Giroud M. Epidemiology of stroke in Europe and trends for the 21st century. La Presse Médicale. 2016 Dec 1;45(12):e391-8.
https://doi.org/10.1016/j.lpm.2016.10.003
PMid:27816343
[5]. Kamalakannan S, Gudlavalleti AS, Gudlavalleti VS, Goenka S, Kuper H. Incidence & prevalence of stroke in India: A systematic review. Indian Journal of Medical Research. 2017 Aug 1;146(2):175-85.
https://doi.org/10.4103/ijmr.IJMR_516_15
PMid:29265018 PMCid:PMC5761027
[6]. Murray SA, Ha KH, Hartigan C, Goldfarb M. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke. IEEE transactions on neural systems and rehabilitation engineering. 2014 Aug 12;23(3):441-9.
https://doi.org/10.1109/TNSRE.2014.2346193
PMid:25134084
[7]. Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiologie Clinique/Clinical Neurophysiology. 2015 Nov 1;45(4-5):335-55.
https://doi.org/10.1016/j.neucli.2015.09.005
PMid:26547547
[8]. Center NS. Spinal cord injury facts and figures at a glance. The journal of spinal cord medicine. 2014 May;37(3):355-6.
https://doi.org/10.1179/1079026814Z.000000000260
PMCid:PMC4064586
[9]. Mathur N, Jain S, Kumar N, Srivastava A, Purohit N, Patni A. Spinal cord injury: scenario in an Indian state. Spinal Cord. 2015 May;53(5):349-52.
https://doi.org/10.1038/sc.2014.153
PMid:25224599
[10]. Sridharan N, Uvaraj N, Dhanagopal M, Gopinath N, Anuswedha A. Epidemiologic evidence of spinal cord injury in Tamil Nadu, India. Int J Res Med Sci. 2015 Jan;3:220-3.
https://doi.org/10.5455/2320-6012.ijrms20150139
[11]. Harvey LA, Adams R, Chu J, Batty J, Barratt D. A comparison of patients’ and physiotherapists’ expectations about walking post spinal cord injury: a longitudinal cohort study. Spinal cord. 2012 Jul;50(7):548-52.
https://doi.org/10.1038/sc.2012.1
PMid:22310321
[12]. Stampacchia G, Rustici A, Bigazzi S, Gerini A, Tombini T, Mazzoleni S. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation. 2016 Jan 1;39(2):277-83.
https://doi.org/10.3233/NRE-161358
PMid:27372363
[13]. Tan K, Koyama S, Sakurai H, Teranishi T, Kanada Y, Tanabe S. Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review. Journal of orthopaedic translation. 2021 May 1;28:55-64.
https://doi.org/10.1016/j.jot.2021.01.001
PMid:33717982 PMCid:PMC7930505
[14]. Duong TT. Toward Real-Life Gait Analysis Using Wearable Sensors (Doctoral dissertation, Stevens Institute of Technology).
[15]. Karimi MT. Evidence-based evaluation of physiological effects of standing and walking in individuals with spinal cord injury. Iranian journal of medical sciences. 2011 Dec;36(4):242.
[16]. Moreno JC, Mohammed S, Sharma N, del-Ama AJ. Hybrid wearable robotic exoskeletons for human walking. InWearable Robotics 2020 Jan 1 (pp. 347-364). Academic Press.
https://doi.org/10.1016/B978-0-12-814659-0.00018-7
PMid:31916337
[17]. Louie DR, Mortenson WB, Durocher M, Schneeberg A, Teasell R, Yao J, Eng JJ. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial. Journal of neuroengineering and rehabilitation. 2021 Dec;18:1-2.
https://doi.org/10.1186/s12984-021-00942-z
PMid:34629104 PMCid:PMC8502504
[18]. Nolan KJ, Karunakaran KK, Chervin K, Monfett MR, Bapineedu RK, Jasey NN, Oh-Park M. Robotic exoskeleton gait training during acute stroke inpatient rehabilitation. Frontiers in Neurorobotics. 2020 Oct 30;14:581815.
https://doi.org/10.3389/fnbot.2020.581815
PMid:33192438 PMCid:PMC7661791
[19]. Goffredo M, Iacovelli C, Russo E, Pournajaf S, Di Blasi C, Galafate D, Pellicciari L, Agosti M, Filoni S, Aprile I, Franceschini M. Stroke gait rehabilitation: a comparison of end-effector, overground exoskeleton, and conventional gait training. Applied Sciences. 2019 Jun 28;9(13):2627.
https://doi.org/10.3390/app9132627
[20]. Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Journal of neuroengineering and rehabilitation. 2015 Dec;12:1-4.
https://doi.org/10.1186/s12984-015-0048-y
PMid:26076696 PMCid:PMC4469252
[21]. Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. Journal of neuroengineering and rehabilitation. 2015 Dec;12:1-3.
https://doi.org/10.1186/s12984-015-0015-7
PMid:25889283 PMCid:PMC4367918
[22]. Gil-Agudo Á, Megía-García Á, Pons JL, Sinovas-Alonso I, Comino-Suárez N, Lozano-Berrio V, Del-Ama AJ. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: results from a randomized controlled trial. Journal of neuroengineering and rehabilitation. 2023 Mar 24;20(1):36.
https://doi.org/10.1186/s12984-023-01158-z
PMid:36964574 PMCid:PMC10039497
[23]. Sutor TW, Ghatas MP, Goetz LL, Lavis TD, Gorgey AS. Exoskeleton training and trans-spinal stimulation for physical activity enhancement after spinal cord injury (EXTra-SCI): an exploratory study. Frontiers in rehabilitation sciences. 2022 Jan 4;2:789422.
https://doi.org/10.3389/fresc.2021.789422
PMid:35169770 PMCid:PMC8842517
[24]. Edwards DJ, Forrest G, Cortes M, Weightman MM, Sadowsky C, Chang SH, Furman K, Bialek A, Prokup S, Carlow J, VanHiel L. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Spinal Cord. 2022 Jun;60(6):522-32.
https://doi.org/10.1038/s41393-022-00751-8
PMid:35094007 PMCid:PMC9209325
[25]. Xiang XN, Zong HY, Ou Y, Yu X, Cheng H, Du CP, He HC. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study. Journal of neuroengineering and rehabilitation. 2021 Dec;18:1-0.
https://doi.org/10.1186/s12984-021-00880-w
PMid:34030720 PMCid:PMC8146689
[26]. Postol N, Spratt NJ, Bivard A, Marquez J. Physiotherapy using a free-standing robotic exoskeleton for patients with spinal cord injury: a feasibility study. Journal of neuroengineering and rehabilitation. 2021 Dec;18:1-0.
https://doi.org/10.1186/s12984-021-00967-4
PMid:34953501 PMCid:PMC8709973
[27]. Tsai CY, Asselin PK, Hong E, Knezevic S, Kornfeld SD, Harel NY, Spungen AM. Exoskeletal-assisted walking may improve seated balance in persons with chronic spinal cord injury: a pilot study. Spinal Cord Series and Cases. 2021 Mar 12;7(1):20.
https://doi.org/10.1038/s41394-021-00384-8
PMid:33712561 PMCid:PMC7955046
[28]. van Dijsseldonk RB, Rijken H, van Nes IJ, van de Meent H, Keijsers NL. Predictors of exoskeleton motor learning in spinal cord injured patients. Disability and rehabilitation. 2021 Jul 3;43(14):1982-8.
https://doi.org/10.1080/09638288.2019.1689578
PMid:31724882
[29]. Murray SA, Ha KH, Hartigan C, Goldfarb M. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke. IEEE transactions on neural systems and rehabilitation engineering. 2014 Aug 12;23(3):441-9.
https://doi.org/10.1109/TNSRE.2014.2346193
PMid:25134084
[30]. Asselin P, Cirnigliaro CM, Kornfeld S, Knezevic S, Lackow R, Elliott M, Bauman WA, Spungen AM. Effect of exoskeletal-assisted walking on soft tissue body composition in persons with spinal cord injury. Archives of Physical Medicine and Rehabilitation. 2021 Feb 1;102(2):196-202.
https://doi.org/10.1016/j.apmr.2020.07.018
PMid:33171129
[31]. Tamburella F, Lorusso M, Tramontano M, Fadlun S, Masciullo M, Scivoletto G. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review. Journal of neuroengineering and rehabilitation. 2022 Mar 15;19(1):27.
https://doi.org/10.1186/s12984-022-01003-9
PMid:35292044 PMCid:PMC8922901
[32]. Sinha N. Introducing Gamification for advancing current mental healthcare and treatment practices. InIoT in Healthcare and Ambient Assisted Living 2021 Jan 5 (pp. 223-241). Singapore: Springer Singapore.
https://doi.org/10.1007/978-981-15-9897-5_11
[33]. Van der Loos HM, Reinkensmeyer DJ, Guglielmelli E. Rehabilitation and health care robotics. Springer handbook of robotics. 2016:1685-728.
https://doi.org/10.1007/978-3-319-32552-1_64
[34]. Miller KJ, Adair BS, Pearce AJ, Said CM, Ozanne E, Morris MM. Effectiveness and feasibility of virtual reality and gaming system use at home by older adults for enabling physical activity to improve health-related domains: a systematic review. Age and ageing. 2014 Mar 1;43(2):188-95.
https://doi.org/10.1093/ageing/aft194
PMid:24351549
[35]. Ottoboni G, La Porta F, Piperno R, Chattat R, Bosco A, Fattori P, Tessari A. A Multifunctional Adaptive and Interactive AI system to support people living with stroke, acquired brain or spinal cord injuries: A study protocol. PloS one. 2022 Apr 11;17(4):e0266702.
https://doi.org/10.1371/journal.pone.0266702
PMid:35404951 PMCid:PMC9000091

Cite this article: Ninad R Saraf, Hrishikesh Korada, Ranjith Anumasa, Pragati B Shetkar. Current Trends in Effectiveness of Robotic Assisted Gait Training (RAGT) for Gait Recovery in Neuro Rehabilitation – An Evidence-Based Scoping Review. Int J Physiother Res 2024;12(3):4703-4707. DOI: 10.16965/ijpr.2024.116