Prevalence of Palmaris Longus Muscle Agenesis Among Students Assessed Using Various Clinical Assessment Tests

Yaseen Ahmed Wafa *1,2, Maher Abumosamah 1, Qais Gasibat 3,4.

*1 Lecturer, Department of Anatomy, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia.
*2 Lecturer, Department of Anatomy, Faculty of Medicine, Misurata University, Misurata, Libya
3 Senior Physiotherapist, Department of Sport Studies, University Putra Malaysia UPM, 43400 UPM Serdang Selangor, Malaysia.
4 Senior Physiotherapist, Department of Physiotherapy, College of Medical Technology, Misurata, Libya.

ABSTRACT

Introduction: Since the lack of Palmaris Longus Muscle (PLM) has no effect on hand and wrist function, it is considered a non-essential muscle. However, its clinical relevance stems from its widespread application in reconstructive and hand surgery. In addition to gender differences, some sources assert that its absence is more prevalent in those genders who lack it in some way, that it is more prevalent when both eyes are missing, and that it is more prevalent when just one eye is present.

Aim: The primary objective of this research was to find out how common PLM agenesis is among students of both genders. The secondary objective was to demonstrate that a classical test (Schaffer’s test) can be reliably compared to other tests such as Thompson’s test, Mishra’s test, AIIM’s test, and the Hiz-Ediz test.

Materials and Methods: The study was a cross-sectional study carried out at the MAHSA University; A total of 224 cases, comprised of 126 (56.3%) females and 98 (43.8%) males. Each participant was requested to perform five clinical tests namely, Schaeffer’s test, Thompson’s test, Mishra’s test, AIIM’s test, and the Hiz-Ediz test.

Results: The frequent agenesis of the palmaris longus in the right forearm of our study with the Schaeffer’s test was (20.5%) and Thompson’s and Hiz-Ediz tests had equal percentages of agenesis (22.3%) while Mishra’s test (22.8%), and AIIMs test (29.5%) of the participants. Moreover, Thompson’s test had the highest percentage of (70.5%) compared to other tests for detecting the presence of PLM in the left forearm. The second nearest test for PLM detection was Schaeffer’s test with a percentage of (67.4%). AIIMs test was able to detect PLM in (64.3%) of the participants and Mishra’s test and Hiz-Ediz tests had close percentages of (59.4%) and (57.6%) respectively for PLM detection.

Conclusion: It can be concluded that Thompson’s test had a higher percentage among the tests to detect the presence of the PLM tendon in females while Schaeffer’s test was more significant in males. Thompson’s test had the best accuracy level and the highest percentage level of agreement with Schaeffer’s test compared to the other tests.

KEY WORDS: Palmaris Longus Muscle; Agenesis; Schaeffer’s Test, Anatomical Variation, Forearm.

Corresponding Author: YASEEN AHMAD WAFI., MBBS., M.SC *1Lecturer, Department of Anatomy, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia.
E-Mail: ybenwafa@gmail.com
INTRODUCTION

The Palmaris Longus Muscle (PLM) is a thin muscle that arises from the medial epicondyle via the common flexor tendon and adjacent intermuscular septa [1,2]. The long tendon of this muscle, which originates in the anterior flexor retinaculum, is superficially positioned in the anterior compartment of the forearm [3]. The tendon travels deeply to the flexor retinaculum, passing deep and slightly medial to this nerve [4,5]. A few fibres detach from the tendon and intertwine with the transverse fibres of the retinaculum. The tendon makes a flat plate insertion into the palmar aponeurosis after crossing the retinaculum [6]. The short tendon and long body of this muscle are distinctive features [3]. When looking for the median nerve at the wrist, the PLM tendon can be a good landmark [7].

Plastic surgeons utilise the PLM in the restoration of upper lip defects [8, 9], lower lip and chin defects [10], as frontalis suspension surgery for ptosis correction [11], and the restoration of facial paralysis [12]. PLM is the most convenient and widely available tissue type for use in palm-to-fingertip grafts [13].

The palmaris longus is a muscle that has lost its function in human erection during evolution and has become extinct gradually [14]. Since the lack of PLM has no effect on hand and wrist function, it is considered a non-essential muscle [15]. However, its clinical relevance stems from its widespread application in reconstructive and hand surgery [16]. Aside from distinctions in gender, other sources claim that its absence is more common in the genders who lack it in one form or another, that its absence is more common when both eyes are absent, and that its absence is more common when only one eye is present [17, 18]. There is a higher rate absence of palmaris longus (11.1%) in males compared to females (9.3%) [19]. However, many studies such as the one in Brazil found that there are more frequent agenesis of the palmaris longus in females with (29.7%) compared to males at (21.1%) [20].

There are a few techniques (Schaeffer’s, Thompson’s, Mishra’s, Pushpakumar’s, and Thompson’s) for identifying PLM that have been described so far [15, 21]. A fresh examination was recently suggested by Gangata [22]. Research into PLM tendon agenesis has yielded that the Schaeffer and Mishra second tests are two of the most popular ones employed. As with every method, there are benefits and drawbacks to these examinations. Some tests may be conducted simply but do not provide a clear indication of muscle presence; other tests provide a clear indication of muscle presence but are more difficult to implement [16]. Therefore, effective tests are required to detect PLM, preferably those that clearly display the muscle and may be quickly implemented. In light of this, we compared an old standby (Schaffer’s test) to several more modern types (Thompson’s, Mishra’s, AIIM’s, and Hiz-Ediz’s). The primary purpose of this study was to assess the frequency of PLM agenesis among students of both genders; the secondary purpose was to demonstrate the reliability of a classic test (Schaffer’s test) in comparison to more modern alternatives (Thompson’s test, Mishra’s test, AIIM’s test, Hiz-Ediz test).

METHODS AND MATERIALS

Study design: The study was a cross-sectional study carried out at the MAHSA (Malaysian Allied Health Sciences Academy), Faculty of Dentistry, from April to July 2019. All experimental techniques were in accordance with the Helsinki Declaration and authorised by the MAHSA Ethical Committee (Reference: RMC/EC01/2019). Before beginning this investigation, individuals who consented to participate were required to give written consent.

Simple size calculation: Since the study was cross-sectional, the sample size formula was a single population proportion: (n = sample size, d = precision of estimate, z = 1.96, p = 0.09, q = 0.01, d = 0.04/0.05). The values of ‘p’ and ‘q’ were obtained from Roohi et al. [23].

\[n = \frac{z^2pq}{d^2} \]

\[z = (1.96)^2(0.9)(0.01)/ (0.04)^2, z = 0.346/0.0016, z = 216 \] subjects.

Participants: The study included 224 respondents in all, both male and female, who were all between the ages of 17 and 22. Participants with a history of upper extremity surgery or...
injury, neurological or rheumatological disease, upper extremity problems, or any related abnormalities were excluded from this study. They comprised of 126 (56.3%) females and 98 (43.8%) males. The mean age of the participants was males (17.75±5.52) and females (18.10±3.01).

Procedure: The researchers explained the steps of the procedure to the participants. Each participant was requested to perform five clinical tests, namely, Schaeffer’s test, Thompson’s test, Mishra’s test, AIIM’s test, and the Hiz-Ediz test (Figure 1 to Figure 5). The physician required seven minutes to explain the tests by performing the manoeuvre involved in every test for each participant with the aid of photographs and then the student repeats the same test manoeuvre. The same specialist performed all the examinations on each patient. The PLM was deemed missing if it could not be palpated or visible beneath the skin at the distal forearm on the wrist. Both gender and palmaris longus status (present/absent) were noted.

The following tests were performed:

- **The individual was requested to oppose the thumb to the ring finger, and then to flex the wrist.**
- **Thompson’s test requires the subject to make a fist, flex the wrist, and then oppose and flex the thumb over the fingers.**
- **Mishra’s test I, II; the examiner will passively hyperextend the subject’s metacarpophalangeal joints of all his/her fingers and is then asked to actively flex the wrist.**
- **In the AIIM’s test, the examiner touches the ulnar aspect of the subject of the base of the little finger with the tip of the thumb by applying a moderate force keeping the wrist in neutral flexion.**
- **For the Hiz-Ediz test; the examiner applies resistance to the fingers and wrist of the subject while all fingers were at the opposition with the wrist at slight flexion.**

Statistical analysis: To describe the data collected, the Statistical Package for the Social Sciences (SPSS) was used to generate frequencies of the presence of the PLM tendon among the genders using the five clinical tests. Then the presence of PLM was compared if unilateral or bilateral again with respect to gender among the same test using chi-square tests.

An interrater reliability analysis using the Kappa statistic was performed to determine consistency among the raters.
RESULTS
A total of 224 cases, comprised of 126 (56.3%) females and 98 (43.8%) males. The mean age of the participants was males (17.75±5.52) and females (18.10±3.01), respectively. Some 164 cases (94.2%) had right dominant hands, while 60 cases (4.8%) were left dominant. In the Schaeffer’s test, right agenesis was detected in 15 cases in males and in females 31 cases, and left agenesis was determined in males with 33 cases and in females there were 40 cases. In the Thompson’s test, right agenesis was detected in 17 cases in males and in females there were 33 cases and left agenesis was determined in males as 28 cases and in females there were 38 cases. In the Mishra’s test, right agenesis was detected in 24 cases in males and in females detected in 24 cases in males and in females there were 42 cases and left agenesis was determined in 42 cases in males and in females 53 cases. In the AIIM’s test, right agenesis was detected in 17 cases in males and in females 34 cases and left agenesis determined in males in 34 cases and in females 46 cases. In the Hiz-Ediz test, right agenesis was detected in 18 cases in males and in females there were 32 cases and left agenesis was determined in males 39 cases and in females 52 cases (Table 1 and Table 2).

It was noticed that detection of the unilateral presence of the PLM tendon was different between the males and females. The Hiz-Ediz test had the highest percentage of 35% among males, while the lowest was Thompson’s test at 21%. In the female group the Hiz-Ediz test showed the highest percentage at 44% and the lowest was Schaeffer’s test with 33% (Chart 1). It was noticed that detection of the bilateral presence of the PLM tendon was different between the males and females. The Thompson’s test had the highest percentage with 65% among males, while the lowest was Mishra’s and Hiz-Ediz tests at 52%. In the female group the Schaeffer’s test showed the highest percentage with 74% and the lowest was Mishra’s test showed 60% (Chart 2).

To assess the level of agreement between the standard test “Schaeffer’s” and the other tests, the Kappa value was recorded. The Thompson’s test had a substantial percentage level of agreement with the Schaeffer’s test in the right and left forearm (0.761 and 0.884, respectively). AIIM’s test, Hiz-Ediz test and the Mishra’s tests showed moderate agreement (0.55 and 0.66), (0.51, 0.66) and (0.41, 0.57) with the Schaeffer’s test respectively (Table 3 and Table 4).

Table 1: Distribution of the PLM tendon present and absent in the right forearm among gender

<table>
<thead>
<tr>
<th>Test conducted</th>
<th>Male n=98</th>
<th></th>
<th></th>
<th>Female n=126</th>
<th></th>
<th></th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
<td>Absent</td>
<td>% Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>% Present</td>
</tr>
<tr>
<td>Schaeffer’s Test</td>
<td>83</td>
<td>15</td>
<td>84.7</td>
<td>15.3</td>
<td>95</td>
<td>31</td>
<td>75.4</td>
</tr>
<tr>
<td>Thompson’s Test</td>
<td>81</td>
<td>17</td>
<td>82.7</td>
<td>17.3</td>
<td>93</td>
<td>33</td>
<td>73.8</td>
</tr>
<tr>
<td>Mishra’s test</td>
<td>74</td>
<td>24</td>
<td>75.5</td>
<td>24.5</td>
<td>84</td>
<td>42</td>
<td>66.7</td>
</tr>
<tr>
<td>AIIM’s test</td>
<td>81</td>
<td>17</td>
<td>82.7</td>
<td>17.3</td>
<td>92</td>
<td>34</td>
<td>73</td>
</tr>
<tr>
<td>Hiz-Ediz test</td>
<td>80</td>
<td>18</td>
<td>81.6</td>
<td>18.4</td>
<td>94</td>
<td>32</td>
<td>74.6</td>
</tr>
</tbody>
</table>
Table 2: Distribution of the PLM tendon present and absent in the left forearm among gender

<table>
<thead>
<tr>
<th>Test conducted</th>
<th>Male n=98</th>
<th></th>
<th></th>
<th></th>
<th>Female n=126</th>
<th></th>
<th></th>
<th></th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Present</td>
<td>N Absent</td>
<td>% Present</td>
<td>% Absent</td>
<td>N Present</td>
<td>N Absent</td>
<td>% Present</td>
<td>% Absent</td>
<td></td>
</tr>
<tr>
<td>Schaeffer's test</td>
<td>65</td>
<td>33</td>
<td>66.3</td>
<td>33.7</td>
<td>86</td>
<td>40</td>
<td>68.3</td>
<td>31.7</td>
<td>0.76</td>
</tr>
<tr>
<td>Thompson's test</td>
<td>70</td>
<td>28</td>
<td>71.4</td>
<td>28.6</td>
<td>88</td>
<td>38</td>
<td>69.8</td>
<td>30.2</td>
<td>0.769</td>
</tr>
<tr>
<td>Mishra's test</td>
<td>56</td>
<td>42</td>
<td>57.1</td>
<td>42.9</td>
<td>73</td>
<td>53</td>
<td>57.9</td>
<td>42.1</td>
<td>0.905</td>
</tr>
<tr>
<td>AllM's test</td>
<td>64</td>
<td>34</td>
<td>65.3</td>
<td>34.7</td>
<td>80</td>
<td>46</td>
<td>63.5</td>
<td>36.5</td>
<td>0.779</td>
</tr>
<tr>
<td>Hiz-Ediz test</td>
<td>59</td>
<td>39</td>
<td>60.2</td>
<td>39.8</td>
<td>74</td>
<td>52</td>
<td>58.7</td>
<td>41.3</td>
<td>0.824</td>
</tr>
</tbody>
</table>

Chart 1: Percentages of Unilateral presence of PLM tendon according to gender

Chart 2: Percentages of Bilateral presence of PLM tendon according to gender

Table 3: Cohen’s kappa test to assess the percentage of agreement between Schaeffer’s and other tests for the presence and absence of PLM tendon in the right forearm.

<table>
<thead>
<tr>
<th>Test in agreement with Schaeffer's test</th>
<th>Cohen's kappa</th>
<th>95% CI for Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower limit</td>
</tr>
<tr>
<td>Thompson’s test</td>
<td>0.761</td>
<td>0.657</td>
</tr>
<tr>
<td>AllM's test</td>
<td>0.549</td>
<td>0.445</td>
</tr>
<tr>
<td>Hiz-Ediz test</td>
<td>0.514</td>
<td>0.41</td>
</tr>
<tr>
<td>Mishra’s test</td>
<td>0.411</td>
<td>0.307</td>
</tr>
</tbody>
</table>

Table 4: Cohen’s kappa test to assess the percentage of agreement between Schaeffer’s and other tests for the presence and absence of PLM tendon in the left forearm

<table>
<thead>
<tr>
<th>Test in agreement with Schaeffer's test</th>
<th>Cohen's kappa</th>
<th>95% CI for Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower limit</td>
</tr>
<tr>
<td>Thompson’s test</td>
<td>0.884</td>
<td>0.74</td>
</tr>
<tr>
<td>AllM's test</td>
<td>0.656</td>
<td>0.552</td>
</tr>
<tr>
<td>Hiz-Ediz test</td>
<td>0.653</td>
<td>0.549</td>
</tr>
<tr>
<td>Mishra’s test</td>
<td>0.566</td>
<td>0.462</td>
</tr>
</tbody>
</table>
DISCUSSION

According to some, the palmaris longus is the most changeable muscle in the body since it is often completely missing from one or both arms [23]. Methods for detecting the existence of the palmaris longus muscle have been developed [24]. The detection tests may yield conflicting findings because the methods used to identify neighbouring muscles to the palmaris longus tend to differ [25].

The incidence of agenesis of palmaris varies with race, and these differences have been reported [26].

The rate of absence of palmaris longus reported by Brandon et al. [7] was (11.1%) in males compared to females (9.3%) which was less than what was reported in this study. In this study, the rate of agenesis of palmaris longus in the Schaeffer’s test, right agenesis was (15.6%) in males and in females (24.6%), and left agenesis was determined in males (33.7%) and in females (31.7%). In the Thompson’s test, right agenesis was detected (17.3%) in males and in females (26.2%) and left agenesis was determined in males (28.6%) and in females (33.3%). In the Mishra’s test, right agenesis was detected (24.5%) in males and in females (66.7%) and left agenesis was determined in males (42.9%) and in females (42.1%). In the AlIM’s test, right agenesis was detected (17%) in males and in females (27%) and left agenesis was determined in males (34.7%) and in females (34.5%). In the Hiz-Ediz test, right agenesis was detected (18.4%) in males and in females (25.4%) and left agenesis was determined in males (39.8%) and (41.3%) in females.

As males tend to have stronger and wider muscles and females tend to have more adipose tissue, it is possible that the higher incidence of palmaris longus described by Arquez [27] could be attributable to the latter. The current findings were corroborated by a review of the literature on agenesis in the Turkish population, which found that it was more prevalent in females and on the left side, albeit not all reported differences that were statistically significant [28, 25].

According to research conducted in Brazil, agenesis of the palmaris longus was more prevalent in females (29.7%) than in men (21.1%) [20]. In the southern region of Iran, (38.6%) of the participants with absence were females, while only (22.7%) of the participants were men [29]. However, there are contradictory studies, such as the research conducted in East Africa, which revealed a greater rate of absenteeism among females than males [30]. However, the Schaeffer’s test revealed the most frequent agenesis of the palmaris longus in the right forearm (20.5%), followed by Thompson’s and Hiz-Ediz tests with identical percentages of agenesis (22.3%), Mishra’s test (22.8%), and AIIMs test (29.5%) of the individuals. In addition, Thompson’s test exhibited the greatest detection rate of PLM in the left forearm (70.5%), compared to other tests. Schaeffer’s test came in second for PLM detection with a percentage of (67.4%). AIIM’s test was able to detect PLM in (64.3%) of subjects, whereas Mishra’s and Hiz-tests Ediz’s had similar detection rates of (59.4%) and (57%), respectively.

In this study the detection of the unilateral presence of palmaris longus tendon was different between males and females. The Hiz-Ediz test had the highest percentage (35%) among males, while the lowest was Thompson’s test (21%). In the female group the Hiz-Ediz test showed the highest percentage (44%) and the lowest was for the Schaeffer’s test (33%), while the detection of the bilateral presence of the palmaris longus tendon was different between the males and females. The Thompson’s test had the highest percentage (65%) among males, while the lowest was the Mishra’s and Hiz-Ediz tests (52%). In the female group the Schaeffer’s test showed the highest percentage (74%) and the lowest was for the Mishra’s test (60%). Out of the total prevalence of presence study by ALIYU et al. [34] was (82.6%), and (60.3%) exhibited unilateral presence while (20.7%) showed bilateral presence and the unilateral (69.9%) exhibited unilaterality on the right, and (90.7%) showed a left unilateral presence. This was supported by a report with a total prevalence of presence of (79%), of which (89%) were unilateral and (91%) bilateral [31].

In another study, it was also recorded with a
(93.6%) unilateral presence and (97.1%) bilateral presence, out of the total [32].

It has been stated that the most accurate test for palmaris longus evaluation is the standard or Schaeffer test [33], and the test has been applied in most of the research so that a positive result may be considered by an individual with the tendon. In the present investigation, Thompson’s test detected the presence of the PLM tendon in a greater proportion of females than Schaeffer’s test did in males. Concerning the level of accuracy, Thompson’s test was the highest as well as had a substantial percentage level of agreement with Schaeffer’s test over other tests.

CONCLUSION

Based on results of the study it can be concluded that the Thompson’s test had a higher percentage among the tests to detect the presence of the PLM tendon in females while Schaeffer’s test showed better results for males. Thompson’s test had the highest accuracy level and the highest percentage level of agreement with Schaeffer’s test compared to the other tests. According to the current study findings, Schaeffer’s and Thompson’s tests are recommended to be used in clinical settings to detect the presence of the PLM tendon. On the other hand, due to the limitations of the study, it is recommended to consider a larger sample size as well as an equal number of participants in terms of gender for future research. This could allow for better and clear conclusions regarding which clinical test has the highest frequency and accuracy among genders.

Conflicts of Interests: None

Author Contributions

Yaseen - data curation, Qais - formal analysis,
Yaseen and Maher - investigation,
Yaseen and Maher - methodology,
Yaseen - project administration, Qais - resources,
Qais - software, Yaseen - supervision,
Qais and Yaseen - validation,
Yaseen and Maher - visualization,
Qais - writing—original draft,
Qais - writing—review and editing,
Yaseen, Maher and Qais - The published version of the paper has been read and approved by all authors.

REFERENCES

How to cite this article: