Hardy-Weinberg Equilibrium Study of Some Morphogenetic Traits in a Nigerian Population

Jaiyeoba-Ojigho Jennifer Efe ^{*1}, Lilian Ebele Chris-Ozoko ¹, Enaohwo Mamerhi Taniyohwo ¹, Ubogu Joseph Aforkogene ¹, Emmanuel Ikechukwu Okolie ², Innocent Onyesom ³.

^{*1} Department of Human Anatomy, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.

² Department of Nursing and Midwifery, University of Central Lancashire, Preston, England.

³ Malaria Research Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.

ABSTRACT

Background: The Hardy-Weinberg (HW) equilibrium studies the distribution of allelic and genotypic frequencies within a population. It provides a mathematical benchmark for a population that is evolving and not evolving.

Aim: This study investigated six morphogenetic traits among families in a Nigerian population using the Hardy-Weinberg principle with the aim of evaluating if the population was in HW equilibrium.

Methodology: A total of 45 families comprising a father, mother and at least one offspring were conveniently sampled in Ogbe- Ijoh district in Delta State, Nigeria. Earlobe attachment, Hand clasping, Hitchhiker's thumb, Leg folding, Morton's toe and Widow's peak were studied for their allelic and genotypic frequencies. The Chi-square test was used to analyse the association between these traits and sex, and conformance to the Mendelian inheritance pattern was evaluated with a Mendelian Chi-square. The Hardy-Weinberg equilibrium compared the allelic frequencies of parents with those of offspring.

Results: Males had higher frequencies for attached earlobes, Morton's toe and widow's peak (35.1, 51.9, 49.4%), while the females showed a predominance for hitchhiker's thumb, right hand clasping and leg folding (50.72.4, 70.7%). There was no association between the traits and gender (p>0.05). From the Mendelian Chi-square, free earlobe, right-hand clasping, right leg folding, Morton's toe (SBt), the recessive phenotype of hitchhiker's thumb as well as widow's peak were the dominant traits **in the** studied population ($X^2 < 3.841$). The H-W equation revealed a deviation of the offspring's genotype from those of the parents for earlobe, hand clasping, leg folding, Morton's toe and widow's peak (1:1:2 [1:1; 4]; 2: 1: 3 [1:1:2]; 3:1:3 [1:1:2]; 5: 1: 4 [6:1:5]; 5:1:4 [7: 1:5]). However, parental and offspring alleles were identical for hitchhiker's thumb (5:1:5 [5:1:5]). The homozygotes for both parents and offspring outnumbered the heterozygotes for all traits (295: 245; 156: 119).

Conclusion: The study showed that only the hitchhiker's thumb was in HW equilibrium, suggesting that evolution may not occur at that locus.

KEYWORDS: Hardy-Weinberg equilibrium, Mendel, Traits, Nigeria, Population.

Corresponding Author: Jaiyeoba-Ojigho Jennifer Efe, Department of Human Anatomy, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria. **E-Mail:** efemenaojigho@gmail.com

Access this Article online	Journal Information						
Quick Response code	International Journal of Anatomy and Research ISSN (E) 2321-4287 ISSN (P) 2321-8967 https://www.ijmhr.org/ijar.htm DOI-Prefix: https://dx.doi.org/10.16965/ijar						
	Article	Information					
	Received: 12 Nov 2023	Accepted: 10 Jan 2024					
	Peer Review: 14 Nov 2023	Published (O): 05 Mar 2024					
DOI: 10.16965/ijar.2023.259	Revised: 12 Dec 2023	Published (P): 05 Mar 2024					

INTRODUCTION

A population is described as a set of organisms belonging to the same species, living simultaneously in a specific environment, influencing and mating with each other [1]. These individuals comprise a particular set of alleles, which are variants of occurring genes known as gene pools [1]. However, population genetics has been defined by several scholars as the study of the dissemination of genes and their alternative forms (alleles) within a population [2-3].

The Hardy-Weinberg (HW) principle states that in a large randomly mating population where there is no selection, mutation, or migration, the gene and genotype frequencies remain constant from one generation to another, and the population is declared as being in the Hardy- Weinberg equilibrium [4]. Shizong [4] further affirmed that the hypothesis of a large randomly mating population is an indication that there is no genetic drift and choice of mating. The HW equilibrium comprises an association between gene and genotype frequencies, coined in the square law [4]. Logically, the square law is represented by $(A_1 + A_2)^2 = A_1 A_1 + 2A_1 A_2 + A_2 A_3$. If p is taken as the frequency of the allele for A_1 , then q=1-p becomes the allele frequency for A₂. In addition, p², q² and 2pq becomes the frequency of the genotype for $A_1 A_1$, $2A_1 A_2$ and $A_2 A_3$ respectively[4]. They represent the three basic combinations of alleles termed homozygous dominant, heterozygous dominant and homozygous recessive, which are expressed as phenotypes. This principle can estimate the occurrence of recessive alleles and carriers (heterozygotes) for several morphogenetic traits in a given population [4]. These traits are the sources of variation within a population [5]. Several include widow's peak, cheek dimples, earlobe morphology, Morton's toe, etc. [5-6].

Understanding human genetics creates an awareness of the variation of traits within a population, the source and mechanism of transmission of these variations, as well as tracing evolutionary history [7]. The first step in understanding traits in a given population is to study their occurrence and distribution within that population. The relevance of morphogenetic traits has been associated with the recognition of individuals, education of Mendelian principles and most recently, precise traits have been linked with the odds of definite human conditions [7]. There have been conflicting theories on the patterns of inheritance of some morphogenetic traits [7]. However, most of them have been studied on the assumption that they are monogenetic traits [7].

This study investigated six morphogenetic traits among families in a Nigerian population using the Hardy-Weinberg principle with the aim of evaluating if the population was in HW equilibrium. These traits will also be confirmed if they are monogenetic using the Mendelian Chi-square, suitable for teaching the principles of Mendelian genetics. The study was carried out due to a scarcity of information on population genetics among the Ijaw families residing in Ogbe-Ijoh, Delta State, Nigeria.

METHODS

The study was conducted in the Ogbe-Ijoh district, in Delta State, Nigeria, in 2023. The study comprised 45 families, comprising 45 fathers', 45 mothers' and 45 offspring. Participants were educated on the importance of the study and observed for the expression of these traits. The six qualitative traits (Earlobe attachment, Hand clasping, Hitchhiker's thumb, Leg folding, Morton's toe and Widow's peak) were studied for their allelic and genotypic frequencies within the population and confirming if the population was in HW equilibrium. Traits were assigned dominant and recessive using the Mendelian Chi-square [6]. The association between the expression of these traits and gender was done with the Chi-square test (X^2), with values less than 0.05 considered significant [7]. Analysis was done using the IBM SPSS Version 20 software (IBM Corp., Armonk, NY, USA) [7].

The Mendelian Chi-square determined if the traits were dominant or recessive on the hypothesis that they obey the rules of the dominant and recessive single gene Mendelian approach [6-8]. The data from the parents were pooled into three mating types (Traits present X Trait present; Trait Present X Trait Absent; Trait Absent X Trait Absent) according to published categorization [9]. The observed outcome from the offspring was then tested against the expected outcome from Mendelian principles corresponding to a Chi-square value of 3.841 at a 95% confidence level [6,8]. The HW principle was applied to calculate the frequencies of the alleles and genotypes of each trait within the studied population [6,8]. Ethical approval for this work was obtained from the Research and Ethics Committee, Department of Human Anatomy, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria (DELSU/ CHS /ANA/ 2023/81).

RESULTS

Table 1 shows the distribution of the morphogenetic traits in the studied population. A total of 33.3, 17.8, and 44.4% of fathers', mothers', and offspring had attached earlobes, while 66.7, 82.2 and 55.6% of them had free earlobes. The study also showed that a total of 46.7, 28.9, and 28.9% of fathers' mothers' and their offspring clasped their left hands on their right as compared to 53.3, 71.1, and 71.1% of them who clasped their right hands on their left.

Further findings showed that 51.1, 46.7, 48.9%, 48.9, 55.6, 48.9%, 48.9, 44.4, and 53.3% of fathers' mothers' and offspring had hitchhiker's thumb, Morton's toe and widow's peak. In addition, 46.7, 31.1 and 26.7% of fathers', mothers' and offspring folded their left legs on their right compared to 53.3, 68.9 and 73.3% of them who folded their right legs on their left.

Table 2 illustrates sex-associated differences among the six morphogenetic traits in the studied population. A total of 35.1 and 64.9% of males had attached and free earlobes, as compared to 27.6 and 72.4% of females. We also observed that 40.3% of males and 27.6% of females clasped their left hands on their right, while 59.7% of males and 72.45% of females clasped their right hands on their left. We only observed 48.1, 51.9, and 49.4% males, 51. 9, 50.0, and 48.3% of females with hitchhiker's thumb, Morton's toe and widow's peak. A total of 39.0% of males and 29.3% of females from this study folded their left legs on their right as compared to 61.0% of males and 70.70% of females who folded their right on their left legs. All morphogenetic traits in the studied population were without sexual preference (p<0.05).

The below table (Table 3) shows the data of the 45 families pooled, and the Mendelian Chi-square was used to compare the observed to the expected Mendelian outcome with the inference drawn from calculated results. We observed more insignificant with lower p values when the free earlobe was dominant over the attached earlobe; right-hand clasping was dominant over left, absence of hitchhiker's thumb was prevalent over its' presence, right folding of the leg was dominant over left folding, Morton's toe (SBt) was dominant over longer big toe (LBt), and absence of widow's peak was dominant over its presence. From this study, we can state from Mendelian calculations that free earlobe, right-hand clasping, right leg folding, Morton's toe and the recessive phenotype of hitchhiker's thumb along with widow's peak were the dominant traits in the studied population.

Table 4 shows the gene and genotypic frequencies of the six morphogenetic traits of the parents in the studied population. The Hardy-Weinberg equilibrium states that the genotypic frequencies, coined in the square law, must equal 1 ($p2+q^2+2pq=1$) (4).

This is interpreted as homozygous dominant + homozygous recessive+ heterozygous dominant =1. The HW equilibrium is also centred on the constant allele frequencies over generations. This is termed p+q=1, where p is the dominant allele and q is the recessive allele. From the table above, the frequencies of the recessive alleles for earlobe attachment, hand clasping, hitchhiker's thumb, leg folding, Morton's toe, and widow's peak were 0.506, 0.606, 0.699, 0.624, 0.691 and 0.683 while those of the dominant alleles were 0.494, 0.394, 0.301, 0.376, 0.309 and 0.317 respectively.

The frequencies for homozygous recessive, homozygous dominant and heterozygous dominant for earlobe attachment, hand clasping, hitchhiker's thumb, leg folding, Morton's

				-	- 11			Frank
	Obse	rved morph traits	ogenetic	Fan Men	nily nber	Presente	d Patterns	Frequency (%)
				Fat		Atta	ched	15 (33.3)
	Ear Lobe Attachment			Fat	ner	Fi	ee	30 (66.7)
				ment Mot			ched	8 (17.8)
							ee	37 (82.2)
				Offsp	oring		ched	20 (44.4) 25 (55.6)
							ee eft	25 (55.6) 21 (46.7)
				Fat	her		ght	24 (53.3)
							eft	13 (28.9)
		Hand Claspi	ng	Mot	her		ght	32 (71.1)
							eft	13 (28.9)
				Offsp	oring	Ri	ght	32(71.1)
				Fat	hor	Ab	sent	22 (48.9)
				rau	liei	Pre	sent	23 (51.1)
	Hi	tchhiker's Th	numb	Mot	her	Ab	sent	24 (53.3)
convod							sent	21 (46.7)
served				Offsp	oring		sent	23 (51.1)
among							sent	22 (48.9)
llation.				Fat	her		eft ght	21 (46.7) 24 (53.3)
							eft	24 (33.3) 14 (31.1)
		Leg Foldin	g	Mot	ther		ght	31 (68.9)
							eft	12 (26.7)
				Offsp	oring	Ri	ght	33 (73.3)
				Fat	hor	Longer	Big Toe	23 (51.1)
				rau	liei	Shorter	Big Toe	22 (48.9)
		Morton's T	oe	Mot	her	Longer	Big Toe	20 (44.4)
							Big Toe	25 (55.6)
				Offsp	oring	-	Big Toe	23 (51.1)
							Big Toe	22 (48.9)
				Fat	her		sent sent	23 (51.1) 22 (48.9)
							sent	22 (48.9) 25 (55.6)
		Widow's pe	ak	Mot	ther		sent	20 (44.4)
							sent	21 (46.7)
				Offsp	oring	Pre	sent	24 (53.3)
						Тс	otal	135(100.0)
Obcorrigo	1	Family	Drocon	tad				
Observed morphogenetic		Family Member	Presen Patter		Frequ	uency (%)	Chi-squar	e Df
			Patter	ns			Chi-squar	e Df
morphogeneti	c traits		Patter Attach	ns ed	16	(27.6)		
	c traits	Member	Patter Attach Free	ed	16 42	(27.6) (72.4)	Chi-squar	e Df
morphogenetic	c traits	Member	Patter Attach Free Attach	ns ed e	16 42 27	(27.6) (72.4) (35.1)		
morphogenetic	c traits	Member Female	Patter Attach Free	ed ed ed	16 42 27 50	(27.6) (72.4)		
morphogenetic	traits	Member Female Male	Patter Attach Free Attach Free	ns ed ed	16 42 27 50 16	(27.6) (72.4) (35.1) (64.9)	0.852	1
morphogeneti	traits	Member Female Male Female	Patter Attach Free Attach Free Left	ns ed ed ed t	16 42 27 50 16 42	(27.6) (72.4) (35.1) (64.9) (27.6)		
morphogenetic	traits	Member Female Male	Patter Attach Free Attach Free Left Righ	ns ed ed t	16 42 27 50 16 42 31	(27.6) (72.4) (35.1) (64.9) (27.6) (72.4)	0.852	1
morphogenetic	traits	Member Female Male Female Male	Patter Attach Free Attach Free Left Righ Left	ns ed ed t	16 42 27 50 16 42 31 46	(27.6) (72.4) (35.1) (64.9) (27.6) (72.4) (40.3)	0.852	1
morphogenetic	traits hment	Member Female Male Female	Patter Attach Free Attach Free Left Righ Left	ns ed ed t t	16 42 27 50 16 42 31 46 29	(27.6) (72.4) (35.1) (64.9) (27.6) (72.4) (40.3) (59.7)	0.852	1
morphogenetic	traits hment	Member Female Male Female Male	Patter Attach Free Attach Free Left Righ Left Righ Abser	ns ed ed t t nt	16 42 27 50 16 42 31 46 29 29	(27.6) (72.4) (35.1) (64.9) (27.6) (72.4) (40.3) (59.7) (50.0)	0.852	1
morphogenetic	traits hment	Member Female Male Female Male	Patter Attach Free Attach Free Left Righ Left Righ Abser Prese	ns ed ed t t nt nt	16 42 27 50 16 42 31 46 29 29 29 40	(27.6) (72.4) (35.1) (64.9) (27.6) (72.4) (40.3) (59.7) (50.0) (50.0)	0.852	1
morphogenetic	traits hment	Member Female Male Female Male	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Left	ns ed ed t t nt nt nt nt	16 42 27 50 16 42 31 46 29 29 29 40 37	(27.6) (72.4) (35.1) (64.9) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3)	0.852	1
morphogenetic	traits hment ing humb	Member Female Male Male Male Female Male	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Left Righ	ns ed ed t t nt nt nt nt t	166 422 277 500 166 422 311 466 299 299 209 209 377 177 177 411	(27.6) (72.4) (35.1) (64.9) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (70.7)	0.852	1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T	traits hment ing humb	Member Female Male Male Male Female Male	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Left Righ Left	ns ed ed t t nt nt nt nt t	16 42 27 50 16 42 29 29 29 29 29 37 37 77 411 30	(27.6) (72.4) (35.1) (64.9) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (70.7) (39.0)	0.852	1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T	traits hment ing humb	Member Female Female Male Female Male Female Male	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Left Righ Left	ns ed ed t t nt nt nt t t	16 42 27 50 16 42 29 29 40 37 37 17 41 30 30 47	(27.6) (72.4) (35.1) (64.9) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (70.7) (39.0) (61.0)	0.852	1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T Leg Foldir	traits hment ing humb	Member Female Male Male Male Female Male	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Left Righ Left	ns ed ed t t nt nt nt nt t t g Toe	16 422 27 50 16 42 29 29 29 40 37 37 17 41 30 40 37 29 29 29 29 29 29 29 29 29 29 29 29 29	(27.6) (72.4) (35.1) (64.9) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (70.7) (39.0)	0.852 2.341 0.05 1.358	1 1 1 1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T	traits hment ing humb	Member Female Female Male Female Male Female Female	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Left Righ Longer Bi	ns ed ed t t nt nt nt nt t t g Toe ig Toe	16 422 27 50 16 42 29 29 29 40 37 37 17 41 30 40 37 29 29 29 29 29 29 29 29 29 29 29 29 29	(27.6) (72.4) (35.1) (64.9) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (70.7) (39.0) (61.0) (50.0)	0.852	1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T Leg Foldir	traits hment ing humb	Member Female Female Male Female Male Female Male	Patter Attach Free Attach Eeft Righ Abser Prese Abser Prese Left Righ Longer Bi Shorter B	ns ed ed t t nt nt nt nt g Toe ig Toe	166 42 27 500 166 42 29 29 20 29 400 37 77 71 77 411 300 47 77 29 29 29 37	(27.6) (72.4) (35.1) (64.9) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (70.7) (39.0) (61.0) (50.0) (50.0)	0.852 2.341 0.05 1.358	1 1 1 1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T Leg Foldir	traits hment ing humb	Member Female Female Male Female Male Female Female	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Longer Bi Shorter B Longer Bi Shorter B	ns ed ed t t nt nt nt nt nt g Toe ig Toe ig Toe ig Toe ig Toe	166 42 277 500 422 40 377 40 377 411 300 477 411 300 477 401 300 300	(27.6) (35.1) (64.9) (27.6) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (29.3) (29.3) (39.0) (61.0) (50.0) (5	0.852 2.341 0.05 1.358	1 1 1 1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T Leg Foldir	traits hment ing humb	Member Female Female Male Male Male Female Male Female	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Longer Bi Shorter B Longer Bi Shorter B	ns ed ed t t nt nt nt nt nt g Toe ig Toe ig Toe ig Toe ig Toe in nt	166 42 277 500 422 40 40 377 40 30 40 40 47 7 40 30 28	(27.6) (35.1) (64.9) (27.6) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (29.3) (61.0) (50.0) (50.0) (50.0) (61.0) (50.0) (5	0.852 2.341 0.05 1.358	1 1 1 1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T Leg Foldir Morton's T	traits hment ing humb	Member Female Female Male Male Male Female Male Female	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Longer Bi Shorter B Longer Bi Shorter B Longer Bi	ns ed ed t t t nt nt nt nt t g Toe ig Toe ig Toe ig Toe ig Toe int nt	166 42 27 500 42 29 400 37 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(27.6) (35.1) (64.9) (27.6) (72.4) (40.3) (59.7) (50.0) (51.9) (48.1) (29.3) (29.3) (48.1) (29.3) (39.0) (61.0) (50.0) (50.0) (50.0) (50.0) (50.0) (50.0) (51.7) (51.9) (51.7) (48.3) (50.6)	0.852 2.341 0.05 1.358 0.05	1 1 1 1
morphogenetic Ear Lobe Attac Hand Clasp Hitchhiker's T Leg Foldir Morton's T	traits hment ing humb	Member Female Female Male Male Female Male Female Male Female	Patter Attach Free Attach Free Left Righ Abser Prese Abser Prese Longer Bi Shorter B Longer Bi Shorter B	ns ed ed t t t nt nt nt nt t g Toe ig Toe ig Toe ig Toe ig Toe ig Toe int nt nt	166 42 27 500 42 29 400 37 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(27.6) (35.1) (64.9) (27.6) (72.4) (40.3) (59.7) (50.0) (50.0) (51.9) (48.1) (29.3) (29.3) (61.0) (50.0) (50.0) (50.0) (61.0) (50.0) (5	0.852 2.341 0.05 1.358 0.05	1 1 1 1

Table 1: Distribution of ObservedmorphogenetictraitsamongFamilies in the studied population

Table 2: Chi-square test ofassociationofObservedmorphogenetic traits amonggenderinthestudied

population.

cant inference indicates he expected outcome Aendel.EO(1: D)5.251.758.048SigNot Sig $2^2 >= 3.841$; Inference = b; Calculated X² < 3.841; t significant (Not Sig)Pin Both Pa10 (76.92)3 (23.08)13(100.0)Cal X²InferCal X²InferNot Sig $2^2 >= 3.841$; Inference = b; Calculated X² < 3.841; t significant (Not Sig)Pin Both Pa10 (76.92)3 (23.08)13(100.0)Cal X²InferNot Sig $2^2 >= 3.841$; Inference = b; Calculated X² < 3.841; t significant (Not Sig)Pin Both Pa3 (21.4)11 (78.6)14(10.00)Cal X²Not Sig $2^{10} (FD)$ 14-8.643Sig0.643Not Sig $2^{10} (FD)$ 14-8.643Sig0.643Not Sig $2^{10} (FD)$ 14-8.643Sig0.663Not Sig $2^{10} (FD)$ 14-8.643Sig0.663Not Sig $2^{10} (FD)$ 14-8.643Sig0.663Not Sig $2^{10} (FD)$ 2.57.512.2Not SigSig0.53Sig $2^{10} (FD)$ 2.57.58(10.00) $2^{10} (FD)$ 626Sig0.667Not SigSig $3^{10} (FD)$ 7.52.51.2Not Sig $3^{10} (FD)$ 626Sig0.667Not Sig- $1^{10} (FD)$ 1.667Not Sig1.667Not	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	1			0		0.1		
fMonitorSignalS		Traits	Parental combination	Total n	umber of Off	ispring's	At	: D	F	: D
fmorphogenetic train $ $				At (%)	F (%)	Total (%)	Cal X ²	Infer	Cal X ²	Infer
fmorphogenetic train			At in Both Pa	5 (100.0)	-	5(100.0)				
fmorphogenetic train tigimage: space					-	· ·	1	Not Sig	2	Not Sig
Functional sharesFunctional sharesSinceSinc					5			-		-
PrimeUU										
fmorphogenetic trait information of 1000image is a set of 1000 </td <td></td> <td></td> <td>F in Both Pa</td> <td>8 (29.6)</td> <td>19 (70.4)</td> <td>27 (100.0)</td> <td></td> <td></td> <td></td> <td></td>			F in Both Pa	8 (29.6)	19 (70.4)	27 (100.0)				
fmorphogenetic trait information of 1000image is a set of 1000 </td <td></td> <td></td> <td>EO (At : D)</td> <td>27</td> <td>-</td> <td></td> <td>13.37</td> <td>Sig</td> <td>2.37</td> <td>Not Sig</td>			EO (At : D)	27	-		13.37	Sig	2.37	Not Sig
f morphogenetic train nomination and negative fieldsleads nomination and is a state in the st				-	27					
aa		Attachment	At in Fa and F in Mo	4 (40.0)	6 (60.0)	10(100.0)				
pro-add humber1000<			EO (At : D)	7.5	2.5		6.533	Sig	1.2	Not Sig
is defining in the set of th			EO (F : D)	2.5	7.5					
resultresultresultresultresultresultresultresultresultf morphogenetic traininform101 </td <td></td> <td></td> <td>F in Fa and At in Mo</td> <td>3 (100.0)</td> <td>-</td> <td>3 (100.0)</td> <td></td> <td></td> <td></td> <td></td>			F in Fa and At in Mo	3 (100.0)	-	3 (100.0)				
Processes			EO (At : D)	2.25	0.75		1	Not Sig	9	Sig
f morphogenetic triat ierror ie			EO (F : D)	0.75	2.25					
image			Parental combination	Total n	umber of Off	spring's	L	D	R	D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				L (%)	R (%)	Total (%)	Cal X ²	Infer	Cal X ²	Infer
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			L in Both Pa	2 (33.33)	4 (66.67)	6(100.0)				
finition of the second of			EO (L : D)	6	-		1.667	Not Sig	1.333	Not Sig
f morphogenetic trait intal combination and omes.COL:10IIIINNN <t< td=""><td></td><td></td><td>EO (R : D)</td><td>-</td><td>6</td><td></td><td></td><td></td><td></td><td></td></t<>			EO (R : D)	-	6					
fmorphogenetic trait indicition instal combination and omes.Note that is domination and omes.Note that is domination is domination is domination.Note that is domination is domination.Note that is domination. <td></td> <td></td> <td>R in Both Pa</td> <td>4 (23.5)</td> <td>13 (76.5)</td> <td>17(100.0)</td> <td></td> <td></td> <td></td> <td></td>			R in Both Pa	4 (23.5)	13 (76.5)	17(100.0)				
			EO (L : D)	17	-		9.941	Sig	0.941	Not Sig
f morphogenetic trait intal combination and omes.L in audi num intal combination and omes.L in audi num intal combination and intal combination and omes.L in audi num intal combination intal num intal combinationI is audi num intal num i			EO (R : D)	-	17					
111 <th< td=""><td></td><td>Hand Clasping</td><td>L in Faland R in Mo</td><td>5 (33 33)</td><td>10 (66 67)</td><td>15(100.0)</td><td></td><td></td><td></td><td></td></th<>		Hand Clasping	L in Faland R in Mo	5 (33 33)	10 (66 67)	15(100.0)				
Intal combination and omes.Int is and information of the interval of	f morphogenetic trait					13(100.0)				
nomes. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13.889</td> <td>Sig</td> <td>0.556</td> <td>Not Sig</td>							13.889	Sig	0.556	Not Sig
0.11 (=3.)17.0 <td></td>										
$ \begin{array}{ $	omes.					7 (100.0)				
number Partial continuou Total number of GPU and No $R > 0$ $A > U$ he expected outcome Parent (Model)							8.048	Sig	0.048	Not Sig
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,					_		_
endnote:note:NameNameCalx ² InferCalx ³ InferCalx ³ Infer2>= 3.841;Inference1076.9232.0331.000 <td>cant inference indicates</td> <td></td> <td>Parental combination</td> <td>Total n</td> <td>umber of Off</td> <td>spring's</td> <td>P</td> <td>D</td> <td>A</td> <td>D</td>	cant inference indicates		Parental combination	Total n	umber of Off	spring's	P	D	A	D
P is both Pain 10 (76-2) 3 (22.00) 13 (10.0) P				Present (%)	Absent (%)	Total (%)	Cal X ²	Infer	Cal X ²	Infer
$ \frac{1}{2} > 3.841; Inference = 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0$	ne expected outcome			. ,	. ,					
$ \frac{2}{2} >= 3.841; Inference = 1; Calculated X2 < 3.841; tsignificant (Not Sig) is goinficant (Not Sig) ached, F= Free, L= Left, nger Big toe, Big Toe, A= Absent, Parents, Fa = Father, Outcome, At: di s dominant, F: D= If Right Dollation and, ti s dominant, F: D= If Right Dollation and, ti s dominant, R: D= If Right Dollation and, ti s dominant, ti s dominant,$	/lendel.		P in Both Pa	10 (76.92)	3 (23.08)	13(100.0)				
$ \frac{2}{2} >= 3.841; Inference = 1; Calculated X2 < 3.841; trigentificant (Not Sig) An back p = 0 21.41 11/861 1420.01 = $	lenden		EQ (P:D)	12			1 7 2 1	Not Sig	1 760	Not Sig
$ \begin{array}{ $	_			12	- 12		1.231	NOL 31g	1.109	NUL SIG
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	² >= 3.841; Inference =			3 (21 4)		14(100.0)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	14(100.0)	8 643	Sig	0.643	Not Sig
t significant (Not Sig) Pin F and Ai Mod 6(00) 4(400) 100000)				-	14		0.015	518	0.015	
$ \frac{1}{10} (h) - 25 + 25 + 1 + 21 + 28 + 6 + 33 + 58 + 6 + 33 + 58 + 6 + 34 + 10 + 100 + 28 + 6 + 34 + 10 + 100 + 28 + 6 + 100 + 28$	ot significant (Not Sig)	Thumb		6 (60 0)		10(100.0)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S (S,					10(100.0)	12	Not Sig	6 533	Sig
$ \begin{array}{ $									0.555	515
biched, F= Free, L= Left, anger Big toe, Big Toe, A= Absent, Big Toe, A= Absent, Fa = Father, Parental combination Total $-mber 0100000000000000000000000000000000000$						8(100.0)				
EQ (h0)2600000Big Toe, A = Absent, = Parents, Fa = Father, Outcome, At: d is dominant, F: D= If nt, bominant, R: D= If Right : D= If Shorter Big Toe is D= If Shorter Big Toe is <td>ached, F= Free, L= Left,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>Sig</td> <td>0.667</td> <td>Not Sig</td>	ached, F= Free, L= Left,						6	Sig	0.667	Not Sig
Big Toe, A = Absent, Parental combination Total number of UTPErrings C:D D D Parents, Fa = Father, Lin Both Pa 2(33.3) 4(66.7) 5(10.0) Cal X ² Infer Cal X ²	nger Big toe		EO (A:D)	2	6					
Parents, Fa = Father, Outcome, At: Unisodn Pa Clisp Clisp<td></td><td></td><td>Parental combination</td><td>Total n</td><td>umber of Off</td><td>spring's</td><td>L</td><td>D</td><td>R</td><td>D</td>			Parental combination	Total n	umber of Off	spring's	L	D	R	D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Big Toe, A= Absent,			Left (%)	Right (%)	Total (%)	Cal X ²	Infer	Cal X ²	Infer
Outcome, At: d is dominant, F: D= If nt, dominant, R: D= If Right 	= Parents, Fa = Father		L in Both Pa	2 (33.33)	4 (66.67)	6(100.0)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				6	-		1.667	Not Sig	1.333	Not Sig
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,	-						
d is dominant, F: D= If nt, dominant, R: D= If Right: D= If Longer Big Toe is D= If Shorter Big Toe is If Shorter Big Toe is If Absent is dominant, t, s, significant, ce. Notwise Team of the transmission of the transmission of	Outcome. At:				14 (87.5)	16(100.0)				
Implement, Lin Fa and R in Mo \$(33.3) 10(66.7) 15(1000) .					-		12.25	Sig	0.25	Not Sig
$ \begin{array}{ $	u is dominant, F: D= If		EO (R : D)	-	16					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	int.	Leg Folding	L in Fa and R in Mo	5 (33.3)	10 (66.7)	15 (100.0)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						/	12.005	<i>c</i> :	0.555	N. C.
$ \begin{array}{ $				1			13.889	Sig	0.556	Not Sig
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$: D= If Longer Big Toe is					9(100.0)				
If Absent is dominant, E0 (R: D) 2 6 0 0 0 0 0 0 0 Parental combinato, Parental combinato Total regimes Total (%) Cal X ² Infer Cal X ²						8(100.0)	<i>.</i>	<i>c</i> :	0.007	
If Absent is dominant, Parental combination Total=umber of Offspring's Lt: D St: D t is dominant, t.(%) St(%) Total(%) Cal X ² Infer Cal X ² Infer significant, Lt in Both Pa 10 (76.92) 3 (23.08) 13 (100.0) Not Sig 1.769 Not Sig E0 (Lt: D) 13 - 1.231 Not Sig 1.769 Not Sig E0 (Lt: D) 13 - 1.231 Not Sig 1.769 Not Sig E0 (Lt: D) 13 - 1.231 Not Sig 1.769 Not Sig E0 (Lt: D) 13 - 1.231 Not Sig 1.769 Not Sig E0 (Lt: D) 15 - 6.667 Sig 1.677 Not Sig E0 (Lt: D) 5.25 - 1.22 Not Sig 6.533 Sig E0 (St: D) 2.55 7.5 - - - - E0 (St: D) 5.25 - - - -	u= If Shorter Big Toe is						6	Sig	U.667	NOT Sig
t is dominant, t t t t t t t total (%) Cal x ² Infer Cal x ² Infer significant, Lt in Both Pa 10 (76-92) 3 (23.08) 13 (100.0) Not Sig 1.769 Not Sig E0 (Lt : D) 13 1.231 Not Sig 1.667 Not Sig 1.667 Not Sig <	= If Absent is dominant					spring's	14	· D	C+	· D
It <td></td> <td></td> <td>rarental combination</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			rarental combination							
FC I	it is dominant,						Cdi X	inel	Cdi A	iner
E0 (lt: D) 13 I.231 Not Sig I.769 Not Sig E0 (lt: D) - 13 - 13 - - 1.231 Not Sig Not Sig St in Both Pa 5 (3.3) 10 (66.67) 15 (100.0) - - 6.667 Sig 1.667 Not Sig E0 (lt: D) - - 15 - - 6.667 Sig 1.667 Not Sig E0 (lt: D) - 15 - 15 6.667 Sig 1.667 Not Sig E0 (lt: D) 7.5 2.5 - 1.23 Not Sig 5.53 Sig 5.53 Sig 5.53 Sig 5.53 Sig 5.55 Sig 5.55 Sig Sig 0.048 Not Sig St in Fand Lt in Mo 2.58 5.75 - 8.048 Sig 0.048 Not Sig E0 (lt: D) 5.25 1.75 8.048 Sig 0.048 Not Sig E0 (lt: D) 5.25 1.75 8.048 Sig 1.667 Not Sig	it,		Lt in Both Pa	10 (76.92)	3 (23.08)	13 (100.0)				
EO (St: D) - 13 - - 13 - <			EO (Lt : D)	13	-		1.231	Not Sig	1.769	Not Sig
St is is <th< td=""><td>signinicant,</td><td></td><td></td><td>-</td><td>13</td><td></td><td></td><td></td><td></td><td></td></th<>	signinicant,			-	13					
$ \begin{tabular}{ c c c c c c } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $	ce.			E /22 21		15 (100 0)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			St in Both Pa	5 (33.3)	10 (00.07)	12 (100.0)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Morton's Tas	EO (Lt : D)	15	-		6.667	Sig	1.667	Not Sig
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		worton's foe		-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						10(100.0)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							1.2	Not Sig	6.533	Sig
$ \begin{array}{ c c c c c c c c c c } \hline E \ C \ (E1 \ C) \ (E1 \ $										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						7 (100.0)				
Parental combination Total $P : D$ $A : D$ Present (M Absent (M Total (M Cal X^2 Infer Cal X^2 Infer P in Both Pa $D (76.92)$ $S (23.08)$ $S (1000)$ $Cal X^2$ Infer Infer EO (P:D) $S (23.08)$ $S (1000)$ $Cal X^2$ Infer Infer Infer Height Parent							8.048	Sig	0.048	Not Sig
Image: Present or pr						spring's	P	· D		· D
NoteN			Parental combination							
Image: Note of the section o				Present (%)	Absent (%)	Total (%)	Cal X ²	Infer	Cal X ²	Infer
Image: Note of the section o					- 111	1.0.1				
EO (A:D) - 13 I			P in Both Pa	10 (76.92)	3 (23.08)	13 (100.0)				
EO (A:D) - 13 I			EO (P:D)	13	-		1.231	Not Sig	1.769	Not Sig
A in Both Pa 5 (33.3) 10 (66.67) 15 (100.0) 0.00 0.00 Not Sig EO (P:D) 15 - 10 6.667 Sig 1.667 Not Sig EO (P:D) 15 - 15 6.667 Sig 1.667 Not Sig EO (P:D) - 15 100.00 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1000 100 <					13					
Widow's Peak ECO (P:D) 15 - 6.667 Sig 1.667 Not Sig EO (P:D) - 15 - 6.667 Sig 1.667 Not Sig EO (P:D) - 15 - 6.67 Sig 1.667 Not Sig P in Fa and A in Mo 6 (60.0) 4 (40.0) 10(100.0) - - - - EO (P:D) 7.5 2.5 1.2 Not Sig 6.533 Sig EO (P:D) 7.5 7.5 - - - - - A in Fa and P in Mo 2 (28.6) 5 (71.4) 7 (100.0) - - - EO (P:D) 5.25 1.75 8.048 Sig 0.048 Not Sig				5 /22 21		15 (100 0)				
Widow's Peak EO (A:D) - 15 Icm				(۵۵.۵) د	10 (00.07)	10 (100.0)				
EO (A:D) - 15 - 16 -		Widow's Post		15	-		6.667	Sig	1.667	Not Sig
EO (P:D) 7.5 2.5 1.2 Not Sig 6.533 Sig EO (A:D) 2.5 7.5 -				-						
EO (A:D) 2.5 7.5 I I I I A in Fa and P in Mo 2 (28.6) 5 (71.4) 7 (100.0) I I I EO (P:D) 5.25 1.75 8.048 Sig 0.048 Not Sig						10(100.0)				
A in Fa and P in Mo 2 (28.6) 5 (71.4) 7 (100.0) Image: Comparison of the comparison							1.2	Not Sig	6.533	Sig
EO(P:D) 5.25 1.75 8.048 Sig 0.048 Not Sig						7/467				
						7 (100.0)	0.040	C1-	0.042	N-+ C'
EU (A:U) 1.75 5.25							8.048	Sig	U.U48	NOT Sig
			EU (A:D)	1.75	5.25					

Table 3:

Distribution of based on parer offspring outcom

*More Insignifica similarity to th proposed by M

* Calculated X^2 Significant (Sig); Inference = Not

Keys: At = Attac R=Right, Lt= Lon

St= Shorter B P=Present, Pa = Mo= Mother,

EO = Expected O

D = If Attached Free is dominan

L: D= If Left is do is dominant, Lt: dominant, St: D dominant, A: D= P: D= If Present Sig = Significant, Not Sig = Not si

Infer = Inference

Morphogenetic Traits	Total Pop	q² (%)	Q	p ² (%)	Р	(2qp) (%)	Actual no of Homozy. Recessive	Actual no of Homozy. Dominant	Actual no of Heterozy. Dominant
Ear Lobe Attachment	90	0.256 (26)	0.506	0.244 (24)	0.494	0.500 (50)	23	22	45
Hand Clasping	90	0.367 (37)	0.606	0.156 (16)	0.394	0.478 (48)	33	14	43
Hitchhiker's Thumb	90	0.489 (49)	0.699	0.090 (9)	0.301	0.421 (42)	44	8	38
Leg Folding	90	0.389 (39)	0.624	0.142 (14)	0.376	0.469 (47)	35	13	42
Morton's Toe	90	0.478 (48)	0.691	0.100 (10)	0.309	0.427 (43)	43	9	38
Widow's peak	90	0.467 (47)	0.683	0.100 (10)	0.317	0.433 (43)	42	9	39

Table 4: Parental allele frequency distribution of observed morphogenetic traits in the studied population	Table 4:	Parental allele f	requency distribution	on of observed	morphogenetic tra	aits in the studied population	
--	----------	-------------------	-----------------------	----------------	-------------------	--------------------------------	--

 Table 5: Offspring allele frequency distribution of observed morphogenetic traits in the studied population.

Morphogenetic Traits	Total Pop	q ² (%)	Q	p ² (%)	Ρ	2qp (%)	Actual no of Homozygous Recessive	Actual no of Homozygous Dominant	Actual no of Heterozygous Dominant
Ear Lobe Attachment	45	0.444(44)	0.667	0.111 (11)	0.333	0.444 (44)	20	5	20
Hand Clasping	45	0.289 (29)	0.537	0.214 (21)	0.463	0.497 (50)	13	10	22
Hitchhiker's Thumb	45	0.489 (49)	0.699	0.090 (9)	0.301	0.421 (42)	22	4	19
Leg Folding	45	0.267 (27)	0.516	0.234 (23)	0.484	0.499 (50)	17	11	22
Morton's Toe	45	0.511 (51)	0.715	0.081 (8)	0.285	0.408 (41)	23	4	18
Widow's peak	45	0.533 (53)	0.73	0.073 (7)	0.27	0.394 (39)	24	3	18

Table 6: Genotypic and phenotypic ratioof the studied morphogenetic traits forParents and Offspring.

Morphogenetic Traits	Parents / Offspring (Genotypic ratio)	Parents / Offspring (Phenotypic ratio)
Ear Lobe Attachment	1:1:2 / 4:1:4	3:2 / 5:4
Hand Clasping	2:1:3 / 1:1:2	1:1 / 1:1
Hitchhiker's Thumb	5:1:5 / 5:1:5	6:5 / 6:5
Leg Folding	3:1:3 / 1:1:2	4:3 / 1:1
Morton's Toe	5:1:4 / 6:1:5	3:2 / 7:5
Widow's peak	5:1:4 / 7:1:5	3:2 /8:5

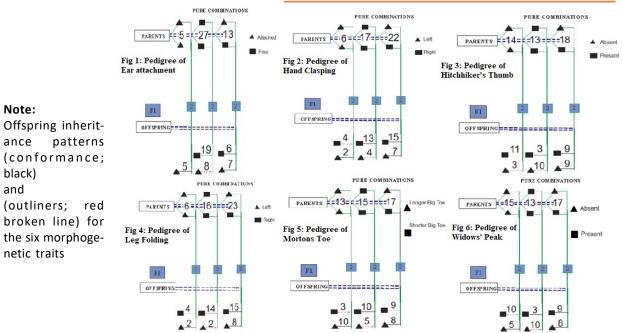


Fig 1-6: Pedigrees of the six morphogenetic traits amongst families in the studied population

toe and widow's peak were 0.444, 0.289, 0.489, 0.267, 0.511, 0.533; 0.111, 0.214, 0.909, 0.234, 0.081, 0.073; 0.444, 0.497, 0.421, 0.499, 0.408 and 0.394 respectively (Table 5).

Table 6 revealed that the parent's genotypic (5:1:5 / 5:1:5) and phenotypic (6:5 / 6:5) frequencies for hitchhiker's thumb were the same as those of the offspring.

DISCUSSION

Understanding the inheritance pattern can enable geneticists to foretell the likelihood of an offspring inheriting traits from either parent (10), which can be vital in settling parental controversy. The study showed that the free earlobe was dominant over the attached earlobe from the Mendelian calculated results. These findings were consistent with Asita *et al.* [7] and Ordu *et al.* [11]. They observed that the free earlobe was dominant over the attached from the Mendelian ratio.

This study also showed that this trait was without sexual preference, which does not fit into the assumption of a sex-linked or mitochondrial inheritance pattern. However, one of the assumptions of autosomal inheritance is that both males and females are always affected by the trait.

Morton's toe (SBt) from our study was dominant over the long big toe (LBt), suggesting that either parent may be homozygous dominant (MM) or heterozygous predominant (Mm), producing at least 25% offspring with the trait. Our findings were inconsistent with Aigbogun et al. [6], who noticed that the Longer big toe was dominant over Morton's toe from the Mendelian ratio. Nevertheless, our result was the same as that of Kaplan, who discovered that the length of the hallux was recessive compared to Morton's toe, which was dominant [12]. Differences could be a result of the genetic pool amongst the population. Morton's toe was also without sexual preference among families, which was tallied by Aigbogun et al. [6].

Mendelian statistics further showed that right-hand clasping and leg folding were dominant over left-hand clasping and leg folding without sexual differences. Lutze [13] did a survey on families for hand clasping and discovered a minor dominance of R offspring from the mating of R X R, as well as a slight dominance of L offspring from the mating of L X L. Lutze affirmed that hand clasping was genetically transferred from parents to offspring with no sexual differences. Still, he could not state the precise mode of inheritance. Several scholars also support Lutze's findings, affirming that hand clasping was genetically controlled [14-15]. A study by Reiss [16] on families observed that leg crossing was under genetic control.

Further findings suggest that the recessive phenotype for widow's peak and hitchhiker's thumb was the dominant trait, indicating that most parents were in the heterozygotes state for both traits.

All traits, except for the hitchhiker's thumb, were not in the HW equilibrium because there was a deviation of parental alleles from those of offspring in the studied population. The idea for utilising the H-W equation was to observe the allele distribution, if that of the offspring is consistent with the parental genotype [4]. There has been a long-standing postulation of Mendel that the genotype of the F1 generation is a representation of those of the parents expressing the dominance-recessive inheritance pattern, and a marked deviation from the parental combination is an indication that the alleles are not segregating in a fashion depicting Mendels' inheritance [4]. The equation to determine the contributing allele of a population helps in understanding the traits' conformance to a non-evolving population. When the genotypic and phenotypic ratio of the offspring and parents are remarkably different, it is an indication that the trait may be undergoing evolutionary change, and it negates the assumptions in Mendelian trait expression [4]. It should be noted that the emphasis on the need for genetic similarity between the parent and offspring is an ideological assumption that the combination of the parental allele and outcome in the offspring is not expected to be significantly different using the Mendelian chi-square. When this is observed, it simply illustrates that the offspring exhibits allele

distributions that represent the parents' combinations to a great extent [4].

It is acknowledged that for a population to be in HW equilibrium, the population must be significant, there must be no mutations, there must be no migration in and out of the population (gene flow), mating must be random, and no natural selection must occur [4]. A deviation from these factors results in a population not being in the HW equilibrium. It is also affirmed that an evolutionary force is acting for a change of allelic frequencies.

The study also showed that males in the studied population had more attached earlobe, Morton's toe and widow's peak, while the females showed a predominance for hitchhiker's thumb, right-hand clasping and leg folding. Anibor et al. [17] studied the prevalence of attached earlobes among the Ika ethnic group, and John Nwolim Paul et al. [18] conducted a similar study on the Idoma people of Nigeria. They found that attached earlobes were more common in males. Aigbogun et al. [6] discovered that Morton's toe was predominant among Nigerians residing in Port Harcourt. However, Ebeye et al. [5] found that among the Esan people, widow's peak and attached earlobe are more prevalent in females than males, which contradicts our findings. John Nwolim Paul et al.'s investigation on hand clasping among Idoma people in Nigeria differed from ours. He observed that males were more right-hand claspers than females. Nevertheless, our findings were consistent with Onyije et al. [20], who observed a high proportion of females with hitchhiker's thumb in South Southern Nigeria. Differences could be due to ethnic variation.

CONCLUSION

The inheritance pattern of certain morphogenetic traits has been the subject of numerous debates. However, it cannot be definitively stated from a scientific perspective that these six traits follow a Mendelian pattern. Nonetheless, we have been able to determine which of the traits are dominant in the studied population by utilising Mendelian statistics.

Abbreviations

HW- Hardy-Weinberg

At - Attached,

F- Free, L- Left, R- Right, Lt- Longer Big toe,

St- Shorter Big Toe, A- Absent, P- Present,

Pa - Parents, Fa - Father, Mo - Mother,

- EO Expected Outcome, At:
- D = If Attached is dominant,
- F: D= If Free is dominant,
- L: D= If Left is dominant,
- R: D= If Right is dominant,

Lt: D= If Longer Big Toe is dominant,

St: D= If Shorter Big Toe is dominant,

A: D= If Absent is dominant,

P: D= If Present is dominant,

Sig = Significant, Not Sig = Not significant, Infer = Inference.

Author Contributions

Lilian Ebele Chris-Ozoko: Concept and design of study

Jaiyeoba-Ojigho Jennifer Efe and Ubogu Joseph Aforkogene: Attainment of data

Emmanuel Ikechukwu Okolie: Analysis and elucidation of data

Jaiyeoba-Ojigho Jennifer Efe: Manuscript draft

Innocent Onyesom and Enaohwo Mamerhi Taniyohwo: Decisive correction of manuscript for vital scholar content

Lilian Ebele Chris-Ozoko and Enaohwo Mamerhi Taniyohwo: Administrative and technical support

All authors have made vital contributions and approved the manuscript.

ORCiD

Jaiyeoba-Ojigho Jennifer Efe: 0000-0002-5921-0876 Lilian Ebele Chris-Ozoko: 0000-0001-8092-4382 Innocent Onyesom: 0000-0001-7095-7666 Ubogu Joseph Aforkogene: NA Emmanuel Ikechukwu Okolie: 0000-0002-8510-2828 Emmanuel Ikechukwu Okolie: 0000-0002-8510-2828

Conflicts of Interests: None

REFERENCES

- Jankowska D, Milewski R, Cwalina U, Milewska AJ. Application of Hardy-Weinberg law in biomedical research. Studies in Logic, Grammar and Rhetoric. 2011; 25(38):7-27.
- [2]. Milgroom MG. Population biology of plant pathogens: genetics, ecology, and evolution. St. Paul, MN: American Phytopathological Society. 2015.

- [3]. Grünwald NJ, Everhart SE, Knaus BJ, Kamvar ZN. 2017. Best practices for population genetic analyses. Papers in Plant Pathology. 2017; 421. https://doi.org/10.1094/PHYTO-12-16-0425-RVW PMid:28513284
- [4]. Shizhong XU. Quantitative genetics. Basic concepts of population Genetics. 2022; pp 25- 33. https://doi.org/10.1007/978-3-030-83940-6_3
- [5]. Ebeye OA, Chris-Ozoko LE, Ogeneovo P, Onoriode A. A study of some morphogenetic traits among the esan ethnic group of Nigeria. East Africa Medical Journal. 2014 Nov;91(11):420-2.
- [6]. Aigbogun EO, Alabi AS, Didia BC, Ordu KS. Morton's Toe: Prevalence and Inheritance Pattern among Nigerians. International Journal of Applied Basic and Medical Research. 2019 Apr-Jun;9(2):89-94. https://doi.org/10.4103/ijabmr.IJABMR_128_18 PMid:31041171 PMCid:PMC6477964
- [7]. Asita AO, Ntsane K, Taole MM. Occurrence and Distribution of 16 Human Morphogenetic Traits in the Maseru District of Lesotho. British journal of healthcare and medical research . 2022; 9(5):403-25 https://doi.org/10.14738/jbemi.95.13335
- [8]. Ordu KS, Aigbogun EO, Nwankwo JC. Evaluation of nose shape as a Mendelian inherited trait in the determination of parentage among Nigerians in Port Harcourt. Journal of Experimental and Clinical Anatomists. 2016;15:9 13
- https://doi.org/10.4103/1596-2393.190824 [9]. Beckman, L., Böök, JA. Distribution and inheritance
- of mid-digital hair in Sweden. Hereditas, 1959; 45 (2-3)

https://doi.org/10.1111/j.1601-5223.1959.tb03052.x

- [10]. Hugo P, Eliaman Q, John K. History of evolution and its concept. 6th ed, New York City. 2003 55-66.
- [11]. Ordu KS Didia BC, Egbunefu N. Inheritance pattern of earlobe attachment amongst Nigerians. Greener journal of human physiology and anatomy. 2014;2;1 7

https://doi.org/10.15580/GJHPA.2014.1.012214054

 [12]. Kaplan AR. Genetics of relative toe lengths. Acta Geneticae Medicae Gemellolgaie (Roma) 1964;13:295-304. https://doi.org/10.1017/S1120962300015602 PMid:14198926 [13]. Lutze FE. The inheritance of the manner of clasping the hands. The American Naturalist; 1908; 42:195-196.

https://doi.org/10.1086/278920

- [14]. Freire-Maia, A. Twin data on hand clasping: a reanalysis. Acta Genetica et Statistica Medica. 1961; 10: 207-211. https://doi.org/10.1017/S112096230001708X PMid:13701700
- [15]. Pons, J. Hand clasping (Spanish data). Annals of Human Genetics. 1961; 25: 141-144
 https://doi.org/10.1111/j.1460.1800.1961.tb01511.x
 - https://doi.org/10.1111/j.1469-1809.1961.tb01511.x PMid:14487797
- [16]. Reiss M. Leg-crossing: incidence and inheritance. Neuropsychologia. 1994 Jun;32(6):747-50. https://doi.org/10.1016/0028-3932(94)90034-5 PMid:8084429
- [17]. Anibor E. Okolugbo N. Emmanuel I. Charity and Odiete E.(2021). Pattern of earlobe attachment among the Ika ethnic group in Delta State, Nigeria. GSC Advanced Research and Reviews, 7(3): 054-057

https://doi.org/10.30574/gscarr.2021.7.3.0116

- [18]. John NP, Joy O, Gospel CD, Amaka AO, Chioma AO. Pattern of Earlobes Attachment among the Idoma People of Benue State, Nigeria. Scholars Journal of Applied Medical Sciences, 2022 Dec 10(12): 2419. https://doi.org/10.36347/sjams.2022.v10i12.057
- [19]. John Nwolim Paul et al. Descriptive Study of the Idoma People and Pattern of Hand Clasping. Saudi Journal of Medicine. 2023; 8(4): 140-144. https://doi.org/10.36348/sjm.2023.v08i04.002
- [20]. Onyije M, Oyinbo CA, Waritimi EG.The prevalence and comparison of bent little finger and Hitchhiker's thumb in South-South Nigeria. European Journal of Applied Sciences.2012; 4 (4): 157-159.

How to cite this article: Jaiyeoba-Ojigho Jennifer Efe, Lilian Ebele Chris-Ozoko, Enaohwo Mamerhi Taniyohwo, Ubogu Joseph Aforkogene, Emmanuel Ikechukwu Okolie, Innocent Onyesom. Hardy-Weinberg Equilibrium Study of Some Morphogenetic Traits in a Nigerian Population. Int J Anat Res 2024;12(1):8840-8848. **DOI:** 10.16965/ ijar.2023.259