MORPHOMETRIC EVALUATION OF THE FORAMEN MAGNUM AND VARIATION IN ITS SHAPE AND SIZE: A STUDY ON HUMAN DRIED SKULL

Shikha Sharma *1, Anil Kumar Sharma 2, Bhawani Shankar Modi 3, Mohd. Arshad 4.

*1 Associate Professor, Department of Anatomy, F H Medical College & Hospital, Tundla, India.

² Associate Professor, Department of Medicine, F H Medical College & Hospital, Tundla, India.

³ Tutor, Department of Anatomy, F H Medical College & Hospital, Tundla, India.

⁴ Assistant Professors, Department of Anatomy, F H Medical College & Hospital, Tundla, India.

ABSTRACT

The foramen magnum is an important landmark located in the posterior part of the cranial base formed by the occipital bone. The purpose of this study was to evaluate the measurements of the foramen magnum in human dried skull and to note the variations in the shape and size of the foramen magnum. Additionally area and index of the foramen magnum were also calculated. Fifty human dried skulls of unknown age and sex were obtained from the department of CMCH Bhopal and FHMC Tundla. Foramen magnum were examined macroscopically for their different shapes. Anteroposterior and transverse diameters, foramen magnum area & foramen magnum index were measured.

The foramen magnum shapes were determined as round shaped in 22%, oval shaped in 16%, egg shaped in 16%, and irregular in 18%, tetragonal in 12% penta and hexagonal 8% each.

The mean A-P and transverse diameters of the foramen magnum was determined 38.75mm and 33.44mm respectively. In 4% of skull, the occipital condyle was observed to protrude in to the foramen magnum. The mean foramen index and foramen magnum area were 87.68 & 970.57mm². The data obtained may be useful to the neurosurgeon in analysing the morphological anatomy of craniovertebral junction in trans condylar approach for brain stem lesion.

KEY WORDS: Evaluation Morphometry, Foramen magnum variations, skull.

Address for Correspondence: Dr. Shikha Sharma, Associate Professor, Department of Anatomy, F H Medical College & Hospital, Near Etmadpur, Railway over Bridge NH-2, Tundla Distt, Firozabad, Uttar Pradesh 283201, India. E-Mail: anilsharma4160@gmail.com

Access this Article online				
Quick Response code	Web site: International Journal of Anatomy and Research ISSN 2321-4287 www.ijmhr.org/ijar.htm			
DOI : 10.16965/ijar.2015.246	Received:17 Aug 2015Accepted:09 Sep 2015Peer Review:17 Aug 2015Published (O):30 Sep 2015Revised:NonePublished (P):30 Sep 2015			

INTRODUCTION

The complexity of the base of the skull makes this study interesting and useful to the neuro-surgeon orthopedicians and radiologist. Foramen magnum provides a wide communication between the posterior cranial fossa and the vertebral canal. The lower end of the medulla oblongata, the vertebral artery and the spinal accessory nerve pass through it [1]. The dimensions of the FM become clinically as well as surgically important because these vital structures may compress in cases of FM herniation, FM meningiomas and FM achondroplasia [2]. The expansion of transverse

diameter is seen in Arnold Chiari syndrome thus the knowledge of FM diameter is needed to be determined [3,4]. The diameters of the FM are greater in male than female hence the study about FM dimensions can be used in the field of forensic medicine to determine sex in the medicolegal conditions as in aircrafts injuries and war fare injuries [5]. The FM dimensions can be used in forensic medicine and anthropology for determinitation of the gender of the human skulls [6,7,8]. It has been noted that the cranial base remain intact in cases where the rest of the cranium has been compromised, thus the researchers have made use of that fact by analysing sexually significant dimorphic trait for this anatomic region [9,10]. The diameters and area of the foramen magnum are generally more in males than females. Further foramen magnum index and cranial index along with other parameters are utilized in craniometery for making comparisions among races [11]. The shape of FM shows correlation with ancestry of an individual hence variations in its shape have got clinical, radiological and diagnostic importance [12,2]. In neurosurgery the transcondylar approach is commonly used to access the lesions near the brain stem & cervicomedullary junction [13].

MATERIALS AND METHODS

Fifty dried human skulls of unknown age and sex were collected from the different medical colleges and examined for the present study. The different shapes of the foramen magnum were noted macroscopically and classified as round, oval, egg, tetragonal, pentagonal, hexagonal and irregular. The antero-posterior and transeverse diameters were measured by using manual vernier calliper with least count of 0.1mm.The antero-posterior diameter was measured from the end of the anterior border (basion) to the end of the posterior border (opisthion), while the transeverse diameter was measured from the point of maximum concavity on the right margin to the maximum concavity on the left margin. Area of foramen magnum was calculated by using Radinsky [14] formula: 1/4 × 3.14×FML×FMW

where FML= Foramen magnum length and FMW=Foramen magnum width.

Foramen magnum index was calculated by Foramen magnum width× 100/Foramen magnum length.

RESULTS AND TABLES

The various shapes of foramen magnum observed in our study are shown in (Figure 1 -2). Round shaped foramen was observed in 22% oval shaped in 16% egg shaped in 16%, irregular in 18%, tetragonal in 12%, pentagonal and hexagonal 8% each. The percentage and number of different shapes of the foramen magnum are shown in (Table 1). In 4% of the skull the occipital condyles were observed to protruded into the foramen magnum (Figure 3). The mean antero-posterior and transeverse diameters of the foramen magnum was recorded as 38.75mm and 33.44 mm in (Table 2). The mean of area of FM was observed 970.57mm², and the mean of FM index was 87.68 (Table 3). Fig. 1: Showing the various shapes of the formen magnum.

TETRAGONAL

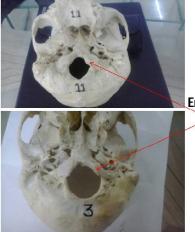
HEXAGONAL

PENTAGONAL

EGG SHAPED

Fig. 2: Showing the various shapes of the formen magnum.

IRREGULAR



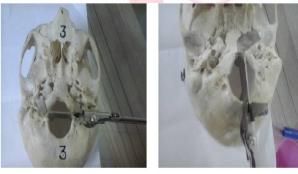

OVAL SHAPED

Fig. 3: Showing encroached occipital condyles.

Encroached Occipital Condyles

Fig. 4: Showing measurements undertaken in the foramen magnum.

Transverse

Antero-posterior

 Table 1: Showing the % and Different Shapes of Foramen

 Magnum (n=50).

	PRESENT STUDY	MURSHED et al.
Morphological variants of FM	Percentage and number	Percentage and number
Round shape	22 % (11)	21.8 % (24)
Irregular shape	18 % (9)	<mark>19.9</mark> % (22)
Oval shape	16 % (8)	8.1 <mark>%</mark> (9)
Egg shape	16 % (8)	-
Tetragonal shape	12 % (6)	12.7 <mark>% (</mark> 14)
Pentagonal shape	8 % (4)	-
Hexagonal shape	8 % (4)	17.2 <mark>% (1</mark> 9)

 Table 2: Showing the comparison of Morphometric Data

 of FM with the previous reports.

AUTHORS	ANTEROPOSTERI	TRANVERSE
	OR DIAMETER	DIAMETER
Schmeltzer et al 1971	35 mm	30 mm
Catalina – Herrera 1987	35.2 mm	30.3 mm
Wanebo and Chicine 2001	36±2 mm	32± 2 mm
Murshed et al 2003 [2]	35.9 ± 3.3 mm	30.4±2.6 mm
Tubs et al (16) 2010	31 mm	27 mm
Present study 2015	38.76 mm	33.44 mm
Burdan et al 2012 [20]	37.06 mm	32.98 mm

Table 3: Comparison of Area and Index of ForamenMagnum in various Studies.

AUTHORS AND YEARS	FORAMEN MAGNUM AREA (mm ²)	FORAMEN MAGNUM INDEX
Teixeira 1983 [17]	963.73	-
Gunay and altinkok 2000 [5]	909.91	-
Burdan et al 2012 [20]	877.4	89.34
Jain et al 2014 [18]	-	86.69
Present study	970.57	87.68

DISCUSSION

In this study the results were 47.70mm and 40.8 mm as maximum anteroposterior and transeverse diameters respectively.

The minimum values of anteropostior and transverse diameters are 31.50 mm and 27.40 mm. The irregular shape of the foramen is seen with the developmental anomalies of the bones and the soft tissues at the craniovertebral junction [4]. The foramen magnum is described as oval in shape [2]. The shape and morphological variations of foramen magnum are important in neurological interpretation. In ovoid type, the surgeon may find it difficult to explore the anterior portion of foramen magnum. Zaidi and Dayal [15] observed the oval shaped foramen magnum in 64% of the skull, Sindel et al [16] observed oval foramen in only 18.9% of the skull and 81.1% of the cases the shapes were different. According to Murshed et al [2] the foramen magnum was found to be oval in 8.1%, egg shaped in 6.3%, round in 21.8%, irregular in 10.9% pentagonal in 13.6% and hexagonal in 13.6%. Their study was based on examination of computer tomogram films in the healthy individuals.

Zaidi and Dayal 1988 [15] reported the hexagonal shape in 24.5%, pentagonal in 7.5%, irregular in 3.5% and round in 0.5%. In the present study the foramen magnum was observed:

Round shaped in 22%, oval in 16%, egg in 16%, irregular in 18% and tetragonal in 12%, Penta and hexagonal 8% each. This variability in different shapes indicative of racial variation among the morphology.

The present study agrees with Murshed et al 2003 as in both these studies the round shape was the most common type.

Int J Anat Res 2015, 3(3):1399-03. ISSN 2321-4287

In 4% of the cases the occipital condyle were protruded in to the foramen magnum. This type of morphology can lead to compression of the vital structures passing through the FM. The mean area of the FM was 970.5mm² in our study which was similar to the observations made by Teixeria WR [17] while the mean of FM index was 87.68 similar to the Jain et al [18].

It is of keen interest to study the morphometery of the FM, from a descriptive and topographical point of view (2).The anatomic diameter have been reported to be about 47.70mm for the A-P diameter and 40.80mm for the transeverse diameter. These values are similar to Richard GD, & jabbour RS [19] for the antero posterior diameter & Burden et al [20] for the transverse diameter Uthman et al [21] reported that the formen magnum area is the best discriminant that could be used to study sexual diamorphism.

The data obtained from the present study was compared with the data reported by other authors as shown in (Table 2 & 3). After the comparision, we observed that our findings are almost similar to that of Burdan et al [20]. Data obtained for area of FM and FM index was also compared with data obtained by other authors as shown in (Table 3). Our findings are almost similar to Burdan et al [20] and JainD et al [18].

The FM is taken as the anatomical landmark in transcondylar approach for a safe occipital condyle resection [22]. The present study illustrates the morphometric data and the variations in the morphology of the FM with emphasis on their clinical implications. This study is also helpful in medicolegal cases for the identification of unknown individuals. With the advancement of the CT and MRI scans as investigation the anatomy of the FM becomes interesting In the field of medicine.

CONCLUSION

The mean anteroposterior diameter of FM was 38.75 mm and the mean transeverse diameter was 33.44 mm. These perameter should be taken during craniovrtebral and cervical spine surgical producedures. Morphometric analysis of the foramen magnum can be used as supportive findings in estimation of sex of fragmented incomplete or damaged dry human skulls. The knowledge of dimensions of the FM also help

Int J Anat Res 2015, 3(3):1399-03. ISSN 2321-4287

ful in determination of malformation (Arnold Chiari Syndrome) and in transcondylar approach to make a safe occipital condyle resection. Though the present study has a limitations as the age and sexes of the skull were not determined, this study may provide an important reference and the measurement may be used as a data for the description of morphological variant of FM.

ACKNOWLEDGEMENTS

We are thankful to Mr. Ramesh and MR. Mukesh of department of anatomy of FHMC for their technical support in taking photographs and to Ms. Shilpi for her support in drafting the text.

Conflicts of Interests: None

REFERENCES

- StandringS. Gray's anatomy. The anatomical basis of clinical practice. 39th ed. London:Elsevier Churchill Livingstone;2005PP460.
- [2]. Murshed KA, Cicekcibasi AE, Tuncer I. Morphometric evaluation of the foramen magnum and variations in its shape:A study on computerised tomographic images of normal adults.Turk J Med Sci. 2003;33:301-306.
- [3]. Sgouros S, GoldinHJ, Hockely AD, Wake MJ, et al. Intracranial volume change in childhood. J Neurosurg. 1999;91:610-616.
- [4]. Furtado S V, Thakre D J, Venkatesh P K, Reddy K, Hedge A S. Morphometric analysis of foramen magnum diamensions and intracranial volume in pediatric chiari I malformation. Acta Neurochir (Wein) 2010;152:221-227.
- [5]. Gunay Y, Altinkok M. The value of the size of foramen magnum in sex determination.J Clin forensicMed 2000;7(3):147-149.
- [6]. Tanuj Kanchan, Anadi gupta, Kewal krishan. Craniometric analysis of foramen magnum for estimation of sex. International journal of medical, Health, biomedical and pharmaceutical engineering 2013;7(7):111-113.
- [7]. Suazo, G.I. Russo, P.P, Zavando, M.D.A, Smith,R.L. Sexual diamorphism in the foramen magnum dimensions. Int. J. Morphol. 2009;27(1):21-23.
- [8]. K. Edward, M.D. Viner, W. Schweitzer, M.J.Thali. Sex determination from the foramen magnum. Journal of forensic radiology and imaging.2013;1(4):186-192.
- [9]. Holland TD. Sex determination of fragmentary crania by analysis of crania base.Am J Phys.A nthropol .1986;70:203-208.
- [10]. Graw M. Morphometrische and Morphognostiische. Geschlectsdiagnostik an der menschlichen Schadelbasis In:oehmicen M, Geserick G(eds) Ostiologische identification and Altersschatzung Schmidt-Romhild,Lubeck,2001:103-121.

- [11]. Deepak S. Howale, Anil Bathija, Sudarshan Gupta, D P Pandit. Corrlation between cranial index and foramen magnum index in human dried skulls.GJRA.2014;3(1):3-6.
- [12].P.Chet hen, K.G.Prakash, B.V. Murlymanju K.U. Prashanth, Latha V.Prabhu, Vasudha V.Saralaya, Ashwin Krysnamurthy, M.S. Somesh, C. Ganesh Kumar. Morphological analysis and morphometery of the foramen magnum: an anatomical investigation.Turkish Neurosurgery.2012;22(4)416-419.
- [13]. Muthukumar N, Swaminathan R, Venkatesh G, Bhanumathy SP. Amorphometric analysis of the foramen magnum region as it relates to the trans condylar approach. ActaNeurochir (Wien) 20015; 147:889-895.
- [14].Radiansky L.Relative brain size a new measure. Science. 1967;155:836-838.
- [15]. Zaidi S H, DayalS S. Variations in the shape of the foramen magnum in Indian skulls. Anat Anz Jena. 1988;167:338-340.
- [16]. Sindel M, Ozkan O, Ucar Y, et al. Foramen magnum'un anatomic varyasyonlari. Akd U Tip Fak Dergisi. 1989;6:97-102.
- [17]. Teixeria WR. Sex identification utilizing the size of Foramen magnum.Am J ForensicMed pathol. 1983;3:203-206.

- [18]. Jain D, Jasuja O P, Nath s. Evaluation of foramen magnum in sex determination from human crania by using discriminant function analysis. E1 mednifco journal 2014;2(2):89-96.
- [19].Richards GD, Jabbour RS. Foramen magnum ontogeny in Homo sapiens: a functional mtrix perspective. Anat Rec. 2011;294:199-216.
- [20]. F. Burdan, J. Szumi O, J. Walocha, L.Klepacz, B. Madej, W. Dworzanski, R. Klepacz, A. Dworzanska, E. Czekajska-Chehab, A. Drop. Morphology of the foramen magnum in young Eastern European adults. Folia Morphol. 2012;71(4):205-216.
- [21]. Uthman AT, Rawi NA and Timimi JA. Evaluation of foramen magnum in gender determination using helical CT Scanning.Dentomaxillofacial Radiol. 2012;14:197-202.
- [22]. Barut N, kale A, Turan Suslu H, Ozturk A, Bozbuga M, Sahinoglu K: Evaluation of the bony landmarks in trans condylar approach. Br J Neurosurg. 2009;23:276-281.

How to cite this article:

Shikha Sharma, Anil Kumar Sharma, Bhawani Shankar Modi, Mohd. Arshad. MORPHOMETRIC EVALUATION OF THE FORAMEN MAGNUM AND VARIATION IN ITS SHAPE AND SIZE: A STUDY ON HUMAN DRIED SKULL. Int J Anat Res 2015;3(3):1399-1403. **DOI:** 10.16965/ijar.2015.246